首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8858篇
  免费   598篇
  国内免费   106篇
  2022年   76篇
  2021年   168篇
  2020年   76篇
  2019年   101篇
  2018年   126篇
  2017年   97篇
  2016年   159篇
  2015年   229篇
  2014年   280篇
  2013年   436篇
  2012年   490篇
  2011年   479篇
  2010年   281篇
  2009年   269篇
  2008年   338篇
  2007年   348篇
  2006年   347篇
  2005年   314篇
  2004年   268篇
  2003年   262篇
  2002年   280篇
  2001年   198篇
  2000年   205篇
  1999年   173篇
  1998年   87篇
  1997年   87篇
  1996年   85篇
  1995年   84篇
  1994年   77篇
  1992年   181篇
  1991年   161篇
  1990年   162篇
  1989年   147篇
  1988年   125篇
  1987年   146篇
  1986年   125篇
  1985年   155篇
  1984年   148篇
  1983年   146篇
  1982年   112篇
  1981年   94篇
  1980年   73篇
  1979年   136篇
  1978年   95篇
  1977年   101篇
  1976年   77篇
  1975年   91篇
  1974年   92篇
  1973年   86篇
  1972年   97篇
排序方式: 共有9562条查询结果,搜索用时 15 毫秒
941.
In the first few hours following Newcastle disease viral infection of human monocyte-derived dendritic cells, the induction of IFNB1 is extremely low and the secreted type I interferon response is below the limits of ELISA assay. However, many interferon-induced genes are activated at this time, for example DDX58 (RIGI), which in response to viral RNA induces IFNB1. We investigated whether the early induction of IFNBI in only a small percentage of infected cells leads to low level IFN secretion that then induces IFN-responsive genes in all cells. We developed an agent-based mathematical model to explore the IFNBI and DDX58 temporal dynamics. Simulations showed that a small number of early responder cells provide a mechanism for efficient and controlled activation of the DDX58-IFNBI positive feedback loop. The model predicted distributions of single cell responses that were confirmed by single cell mRNA measurements. The results suggest that large cell-to-cell variation plays an important role in the early innate immune response, and that the variability is essential for the efficient activation of the IFNB1 based feedback loop.  相似文献   
942.
Parkinson's disease (PD) is linked to the formation of insoluble fibrillar aggregates of the presynaptic protein α-Synuclein (αS) in neurons. The appearance of such aggregates coincides with severe motor deficits in human patients. These deficits are often preceded by non-motor symptoms such as sleep-related problems in the patients. PD-like motor deficits can be recapitulated in model organisms such as Drosophila melanogaster when αS is pan-neurally expressed. Interestingly, both these deficits are more severe when αS mutants with reduced aggregation properties are expressed in flies. This indicates that that αS aggregation is not the primary cause of the PD-like motor symptoms. Here we describe a model for PD in Drosophila which utilizes the targeted expression of αS mutants in a subset of dopadecarboxylase expressing serotonergic and dopaminergic (DA) neurons. Our results show that targeted expression of pre-fibrillar αS mutants not only recapitulates PD-like motor symptoms but also the preceding non-motor symptoms such as an abnormal sleep-like behavior, altered locomotor activity and abnormal circadian periodicity. Further, the results suggest that the observed non-motor symptoms in flies are caused by an early impairment of neuronal functions rather than by the loss of neurons due to cell death.  相似文献   
943.
The cell therapy branch of the regenerative medicine field has been innovative in developing new models of delivery and development and identifying alternative sources of funding. We discuss the implications of these changes for pharmaceutical companies and the opportunities they offer to a new entrepreneur.  相似文献   
944.
Estimation of nuclear DNA content of various bamboo and rattan species   总被引:1,自引:0,他引:1  
We determined the nuclear DNA content (genome size) of over 35 accessions each of bamboo and rattan species from Southeast Asia. The 2C DNA per nucleus was quantified by flow cytometry. The fluorescence of nuclei isolated from the leaves and stained with propidium iodide was measured. The genome size of the bamboo species examined was between 2.5 and 5.9 pg DNA per 2C nucleus. The genome size of the rattan species examined ranged from 1.8 to 10.5 pg DNA per 2C nucleus. This information will be useful for scientists working in diverse areas of plant biology such as biotechnology, biodiversity, genome analysis, plant breeding, physiology and molecular biology. Such data may be utilized to attempt to correlate the genome size with the ploidy status of bamboo species in cases where ploidy status has been reported.  相似文献   
945.
Dengue is a public health problem of global significance for which there is neither an effective antiviral therapy nor a preventive vaccine. The envelope protein of dengue virus is the major antigen to elicit neutralizing antibody response and protective immunity in hosts. Optimization of culture media was carried out for enhanced production of recombinant dengue virus type 3 envelope domain III (rDen 3 EDIII) protein in E. coli. Further, batch and fed-batch cultivation process were also developed in optimized medium. After fed-batch cultivation, the dry cell weight was about 22.80 g/L of culture. The rDen 3 EDIII protein was purified using immobilized metal affinity chromatography. This process produced ~649 mg of purified rDen 3 EDIII protein per liter of culture. The purity of the protein was determined by SDS-PAGE analysis and the reactivity was checked by Western blotting as well as ELISA. These results show that the purified protein may be used for the dengue diagnosis or further prophylactic studies for dengue infection.  相似文献   
946.
947.
Proteins can become oxidatively modified in many different ways, either by direct oxidation of amino acid side chains and protein backbone or indirectly by conjugation with oxidation products of polyunsaturated fatty acids and carbohydrates. While reversible oxidative modifications are thought to be relevant in physiological processes, irreversible oxidative modifications are known to contribute to cellular damage and disease. The most well-studied irreversible protein oxidation is carbonylation. In this work we first examine how protein carbonylation occurs via metal-catalyzed oxidation (MCO) in vivo and in vitro with an emphasis on cellular metal ion homeostasis and metal binding. We then review proteomic methods currently used for identifying carbonylated proteins and their sites of modification. Finally, we discuss the identified carbonylated proteins and the pattern of carbonylation sites in relation to cellular metabolism using the mitochondrion as a case story.  相似文献   
948.
Yuan ZL  Rao LB  Chen YC  Zhang CL  Wu YG 《Fungal biology》2011,115(3):197-213
The biodiversity-functional relationship in fungal ecology was recently developed and debated, but has rarely been addressed in endophytes. In this study, an integrative culture system was designed to capture a rich fungal consortium from the conifer Abies beshanzuensis. Results indicate an impressive diversity of fungal lineages (a total of 84 taxa classified in Dikarya) and a relatively high proportion of hitherto unknown species (27.4%). The laccase gene was used as a functional marker due to its involvement in lignocellulose degradation. Remarkable diversity of laccase genes was found across a wide range of taxa, with at least 35 and 19 distinct sequences in ascomycetes and basidiomycetes respectively, were revealed. Many groups displayed variable ability to decompose needles. Furthermore, many ascomycetes, including three volatile-producing Muscodor species (Xylariaceae), showed the ability to inhibit pathogens. Notably, most laccase-producing species showed little or no antibiosis and vice versa. Clavicipitalean and ustilaginomycetous fungi, specifically toxic to insects, were inferred from taxonomic information. Intra-specific physiological variation in Pezicula sporulosa, a second dominant species, was clearly high. We conclude that a suite of defensive characteristics in endophytes contributes to improving host fitness under various stresses and that a diversity of laccase genes confers an ecological advantage in competition for nutrients. Intra-specific diversity may be of great ecological significance for ecotypic adaptation. These findings suggest a fair degree of functional complementarity rather than redundancy among endemic symbionts of natural plant populations.  相似文献   
949.
950.
Working memory impairments are frequent in Attention Deficit/Hyperactivity Disorder (ADHD) and create problems along numerous functional dimensions. The present study utilized the Visual Serial Addition Task (VSAT) and functional magnetic resonance imaging (fMRI) to explore working memory processes in thirteen typically developing (TD) control and thirteen children with ADHD, Combined type. Analysis of Variance (ANOVA) was used to examine both main effects and interactions. Working memory-specific activity was found in TD children in the bilateral prefrontal cortex. In contrast the within-group map in ADHD did not reveal any working-memory specific regions. Main effects of condition suggested that the right middle frontal gyrus (BA6) and the right precuneus were engaged by both groups during working memory processing. Group differences were driven by significantly greater, non-working memory-specific, activation in the ADHD relative to TD group in the bilateral insula extending into basal ganglia and the medial prefrontal cortex. A region of interest analysis revealed a region in left middle frontal gyrus that was more active during working memory in TD controls. Thus, only the TD group appeared to display working memory-modulated brain activation. In conclusion, children with ADHD demonstrated reduced working memory task specific brain activation in comparison to their peers. These data suggest inefficiency in functional recruitment by individuals with ADHD represented by a poor match between task demands and appropriate levels of brain activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号