首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   313篇
  免费   40篇
  2023年   10篇
  2022年   14篇
  2021年   20篇
  2020年   10篇
  2019年   13篇
  2018年   13篇
  2017年   11篇
  2016年   15篇
  2015年   12篇
  2014年   18篇
  2013年   21篇
  2012年   16篇
  2011年   18篇
  2010年   8篇
  2009年   10篇
  2008年   16篇
  2007年   14篇
  2006年   12篇
  2005年   10篇
  2004年   13篇
  2003年   8篇
  2002年   12篇
  2001年   2篇
  1999年   3篇
  1997年   2篇
  1994年   2篇
  1993年   2篇
  1990年   4篇
  1988年   2篇
  1986年   4篇
  1983年   3篇
  1982年   4篇
  1979年   3篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1970年   2篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
  1961年   1篇
  1952年   1篇
  1950年   2篇
  1945年   1篇
  1944年   1篇
  1942年   1篇
  1936年   1篇
排序方式: 共有353条查询结果,搜索用时 78 毫秒
11.
12.
13.
Anaerobic methanotrophic archaea (ANME) consume methane in marine sediments, limiting its release to the water column, but their responses to changes in methane and sulfate supplies remain poorly constrained. To address how methane exposure may affect microbial communities and methane- and sulfur-cycling gene abundances in Arctic marine sediments, we collected sediments from offshore Svalbard that represent geochemical horizons where anaerobic methanotrophy is expected to be active, previously active, and long-inactive based on reaction-transport biogeochemical modelling of porewater sulfate profiles. Sediment slurries were incubated at in situ temperature and pressure with different added methane concentrations. Sediments from an active area of seepage began to reduce sulfate in a methane-dependent manner within months, preceding increased relative abundances of anaerobic methanotrophs ANME-1 within communities. In previously active and long-inactive sediments, sulfur-cycling Deltaproteobacteria became more dominant after 30 days, though these communities showed no evidence of methanotrophy after nearly 8 months of enrichment. Overall, enrichment conditions, but not methane, broadly altered microbial community structure across different enrichment times and sediment types. These results suggest that active ANME populations may require years to develop, and consequently microbial community composition may affect methanotrophic responses to potential large-scale seafloor methane releases in ways that provide insight for future modelling studies.  相似文献   
14.
In DNA, i‐motif (iM) folds occur under slightly acidic conditions when sequences rich in 2′‐deoxycytidine (dC) nucleotides adopt consecutive dC self base pairs. The pH stability of an iM is defined by the midpoint in the pH transition (pHT) between the folded and unfolded states. Two different experiments to determine pHT values via circular dichroism (CD) spectroscopy were performed on poly‐dC iMs of length 15, 19, or 23 nucleotides. These experiments demonstrate two points: (1) pHT values were dependent on the titration experiment performed, and (2) pH‐induced denaturing or annealing processes produced isothermal hysteresis in the pHT values. These results in tandem with model iMs with judicious mutations of dC to thymidine to favor particular folds found the hysteresis was maximal for the shorter poly‐dC iMs and those with an even number of base pairs, while the hysteresis was minimal for longer poly‐dC iMs and those with an odd number of base pairs. Experiments to follow the iM folding via thermal changes identified thermal hysteresis between the denaturing and annealing cycles. Similar trends were found to those observed in the CD experiments. The results demonstrate that the method of iM analysis can impact the pHT parameter measured, and hysteresis was observed in the pHT and Tm values.  相似文献   
15.
Dybzinski  Ray  Taylor  Natalie  Prosser  Megan  Niosi  Olivia  Demo  Madeline  Kilbane  Erin 《Plant Ecology》2021,222(8):977-991
Plant Ecology - Understanding resource uptake as a function of fine-root mass is important for both basic ecological theory and applied biogeochemical cycling models. We measured plant population...  相似文献   
16.

Elevated temperatures and nutrients are degrading coral reef ecosystems, but the understanding of how early life stages of reef corals respond to these stressors remains limited. Here, we test the impact of temperature (mean ~ 27 °C vs. ~ 29 °C) and nitrate and phosphate enrichment (ambient, + 5 µM nitrate, + 1 µM phosphate and combined + 5 µM nitrate with 1 µM phosphate) on coral larvae using three Hawaiian coral species with different modes of symbiont transmission and reproduction: Lobactis scutaria (horizontal, gonochoric broadcast spawner), Pocillopora acuta (vertical, hermaphroditic brooder) and Montipora capitata (vertical, hermaphroditic broadcast spawner). Temperature and nutrient effects were species specific and appear antagonistic for L. scutaria and M. capitata, but not for P. acuta. Larvae survivorship in all species was lowest under nitrate enrichment at 27 °C. M. capitata and L. scutaria survivorship increased at 29 °C. However, positive effects of warming on survivorship were lost under high nitrate, but phosphate attenuated nitrate effects when N/P ratios were balanced. P. acuta larvae exhibited high survivorship (> 91%) in all treatments and showed little change in larval size, but lower respiration rates at 29 °C. Elevated nutrients (+N+P) led to the greatest loss in larvae size for aposymbiotic L. scutaria, while positive growth in symbiotic M. capitata larvae was reduced under warming and highest in +N+P treatments. Overall, we report a greater sensitivity of broadcast spawners to warming and nutrient changes compared to a brooding coral species. These results suggest variability in biological responses to warming and nutrient enrichment is influenced by life-history traits, including the presence of symbionts (vertical transmission), in addition to nutrient type and nutrient stoichiometry.

  相似文献   
17.
Coral Reefs - While tropical sea cucumbers are among the most conspicuous mobile invertebrates on coral reefs, information on their population biology and ecology is limited, particularly...  相似文献   
18.
The Burseraceae are a medium‐sized family in which 18 genera are currently recognised. They are the subject of a long‐term project to describe the pollen morphology from light, scanning electron and transmission electron microscopy. The pollen morphology of tribe Protieae has been published, as well as an account of the pollen of the African taxa in the family. Pollen data for the other two tribes, Bursereae and Canarieae, are more or less complete. The pollen of all the genera have been examined, with the exception of the recently described Pseudodacryodes Pierlot for which, currently, there is no pollen material available. This paper summarises the results.

There is considerable variation in exine and aperture features between, and occasionally within, the genera and 14 major pollen types are defined, including two previously undescribed types: ‘Canarium oleiferum’ and ‘Canarium gracile’. The distribution of pollen characteristics throughout the family is compared with previously published tribal and subtribal groupings, as well as with current ideas of generic relationships from molecular analyses. Comparisons show notable congruence of pollen data with molecular data. To some extent pollen morphology is different for each of the subtribes. Nevertheless, there are some notable exceptions, for example, the pollen of Garuga and Boswellia are remarkably similar, although Garuga has been included, somewhat tenuously, in tribe Protieae, and Boswellia is included in tribe Bursereae, subtribe Boswelliinae. In a recent molecular tree Garuga and Boswellia appear to be closely related, and this supports the conclusion, based on several macromorphological characters as well as pollen, that Garuga should be transferred to tribe Bursereae.  相似文献   
19.
Fisheries observer programs are used around the world to collect crucial information and samples that inform fisheries management. However, observer error may misidentify similar-looking shark species. This raises questions about the level of error that species misidentifications could introduce to estimates of species’ life history parameters. This study addressed these questions using the Grey Reef Shark Carcharhinus amblyrhynchos as a case study. Observer misidentification rates were quantified by validating species identifications using diagnostic photographs taken on board supplemented with DNA barcoding. Length-at-age and maturity ogive analyses were then estimated and compared with and without the misidentified individuals. Vertebrae were retained from a total of 155 sharks identified by observers as C. amblyrhynchos. However, 22 (14%) of these were sharks were misidentified by the observers and were subsequently re-identified based on photographs and/or DNA barcoding. Of the 22 individuals misidentified as C. amblyrhynchos, 16 (73%) were detected using photographs and a further 6 via genetic validation. If misidentified individuals had been included, substantial error would have been introduced to both the length-at-age and the maturity estimates. Thus validating the species identification, increased the accuracy of estimated life history parameters for C. amblyrhynchos. From the corrected sample a multi-model inference approach was used to estimate growth for C. amblyrhynchos using three candidate models. The model averaged length-at-age parameters for C. amblyrhynchos with the sexes combined were  L¯ = 159 cm TL and  L¯0 = 72 cm TL. Females mature at a greater length (l50 = 136 cm TL) and older age (A50 = 9.1 years) than males (l50 = 123 cm TL; A50 = 5.9 years). The inclusion of techniques to reduce misidentification in observer programs will improve the results of life history studies and ultimately improve management through the use of more accurate data for assessments.  相似文献   
20.
In vivo animal model systems, and in particular mouse models, have evolved into powerful and versatile scientific tools indispensable to basic and translational research in the field of transplantation medicine. A vast array of reagents is available exclusively in this setting, including mono- and polyclonal antibodies for both diagnostic and interventional applications. In addition, a vast number of genotyped, inbred, transgenic, and knock out strains allow detailed investigation of the individual contributions of humoral and cellular components to the complex interplay of an immune response and make the mouse the gold standard for immunological research. Vascularized Composite Allotransplantation (VCA) delineates a novel field of transplantation using allografts to replace "like with like" in patients suffering traumatic or congenital tissue loss. This surgical methodological protocol shows the use of a non-suture cuff technique for super-microvascular anastomosis in an orthotopic mouse hind limb transplantation model. The model specifically allows for comparison between established paradigms in solid organ transplantation with a novel form of transplants consisting of various different tissue components. Uniquely, this model allows for the transplantation of a viable vascularized bone marrow compartment and niche that have the potential to exert a beneficial effect on the balance of immune acceptance and rejection. This technique provides a tool to investigate alloantigen recognition and allograft rejection and acceptance, as well as enables the pursuit of functional nerve regeneration studies to further advance this novel field of transplantation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号