首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123篇
  免费   6篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2018年   4篇
  2017年   3篇
  2016年   2篇
  2015年   2篇
  2014年   4篇
  2013年   11篇
  2012年   11篇
  2011年   7篇
  2010年   6篇
  2009年   3篇
  2008年   9篇
  2007年   5篇
  2006年   9篇
  2005年   3篇
  2004年   6篇
  2003年   7篇
  2002年   4篇
  2001年   2篇
  2000年   2篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
  1988年   2篇
  1987年   4篇
  1984年   1篇
  1983年   1篇
  1975年   2篇
  1974年   1篇
  1972年   2篇
  1971年   1篇
  1970年   2篇
  1969年   1篇
排序方式: 共有129条查询结果,搜索用时 15 毫秒
51.
Iancu CV  Zhou Y  Borza T  Fromm HJ  Honzatko RB 《Biochemistry》2006,45(38):11703-11711
Adenylosuccinate synthetase catalyzes the first committed step in the de novo biosynthesis of AMP, coupling L-aspartate and IMP to form adenylosuccinate. Km values of IMP and 2'-deoxy-IMP are nearly identical with each substrate supporting comparable maximal velocities. Nonetheless, the Km value for L-aspartate and the Ki value for hadacidin (a competitive inhibitor with respect to L-aspartate) are 29-57-fold lower in the presence of IMP than in the presence of 2'-deoxy-IMP. Crystal structures of the synthetase ligated with hadacidin, GDP, and either 6-phosphoryl-IMP or 2'-deoxy-6-phosphoryl-IMP are identical except for the presence of a cavity normally occupied by the 2'-hydroxyl group of IMP. In the presence of 6-phosphoryl-IMP and GDP (hadacidin absent), the L-aspartate pocket can retain its fully ligated conformation, forming hydrogen bonds between the 2'-hydroxyl group of IMP and sequence-invariant residues. In the presence of 2'-deoxy-6-phosphoryl-IMP and GDP, however, the L-aspartate pocket is poorly ordered. The absence of the 2'-hydroxyl group of the deoxyribonucleotide may destabilize binding of the ligand to the L-aspartate pocket by disrupting hydrogen bonds that maintain a favorable protein conformation and by the introduction of a cavity into the fully ligated active site. At an approximate energy cost of 2.2 kcal/mol, the unfavorable thermodynamics of cavity formation may be the major factor in destabilizing ligands at the L-aspartate pocket.  相似文献   
52.
Actin-dependent regulation of the cardiac Na(+)/Ca(2+) exchanger   总被引:1,自引:0,他引:1  
In the present study, the bovine cardiac Na+/Ca2+ exchanger (NCX1.1) was expressed in Chinese hamster ovary cells. The surface distribution of the exchanger protein, externally tagged with the hemagglutinin (HA) epitope, was associated with underlying actin filaments in regions of cell-to-cell contact and also along stress fibers. After we treated cells with cytochalasin D, NCX1.1 protein colocalized with patches of fragmented filamentous actin (F-actin). In contrast, an HA-tagged deletion mutant of NCX1.1 that was missing much of the exchanger's central hydrophilic domain (241–680) did not associate with F-actin. In cells expressing the wild-type exchanger, cytochalasin D inhibited allosteric Ca2+ activation of NCX activity as shown by prolongation of the lag phase of low Ca2+ uptake after initiation of the reverse (i.e., Ca2+ influx) mode of NCX activity. Other agents that perturbed F-actin structure (methyl--cyclodextrin, latrunculin B, and jasplakinolide) also increased the duration of the lag phase. In contrast, when reverse-mode activity was initiated after allosteric Ca2+ activation, both cytochalasin D and methyl--cyclodextrin (Me--CD) stimulated NCX activity by 70%. The activity of the (241–680) mutant, which does not require allosteric Ca2+ activation, was also stimulated by cytochalasin D and Me--CD. The increased activity after these treatments appeared to reflect an increased amount of exchanger protein at the cell surface. We conclude that wild-type NCX1.1 associates with the F-actin cytoskeleton, probably through interactions involving the exchanger's central hydrophilic domain, and that this association interferes with allosteric Ca2+ activation. cytochalasin; methyl--cyclodextrin; allosteric calcium activation  相似文献   
53.
Niemann-Pick disease type C (NPC) is an autosomal recessive genetic disorder manifested by abnormal accumulation of unesterified cholesterol and other lipids. We screened combinatorially synthesized chemical libraries to identify compounds that would partially revert cholesterol accumulation. Cultured CHO cells with NPC phenotypes (CT60 and CT43) were used for screening along with normal CHO cells as a control. We developed an automated microscopy assay based on imaging of filipin fluorescence for estimating cholesterol accumulation in lysosomal storage organelles. Our primary screen of 14,956 compounds identified 14 hit compounds that caused significant reduction in cellular cholesterol accumulation at 10 microM. We then screened a secondary library of 3,962 compounds selected based on chemical similarity to the initial hits and identified 7 compounds that demonstrated greater efficacy and lower toxicity than the original hits. These compounds are effective at concentrations of 123 nM to 3 microM in reducing the cholesterol accumulation in cells with a NPC1 phenotype.  相似文献   
54.

Background

Niemann-Pick type C (NPC) disease is a genetically inherited multi-lipid storage disorder with impaired efflux of cholesterol from lysosomal storage organelles.

Methodology/Principal Findings

The effect of screen-selected cholesterol lowering compounds on the major sterol pathways was studied in CT60 mutant CHO cells lacking NPC1 protein. Each of the selected chemicals decreases cholesterol in the lysosomal storage organelles of NPC1 mutant cells through one or more of the following mechanisms: increased cholesterol efflux from the cell, decreased uptake of low-density lipoproteins, and/or increased levels of cholesteryl esters. Several chemicals promote efflux of cholesterol to extracellular acceptors in both non-NPC and NPC1 mutant cells. The uptake of low-density lipoprotein-derived cholesterol is inhibited by some of the studied compounds.

Conclusions/Significance

Results herein provide the information for prioritized further studies in identifying molecular targets of the chemicals. This approach proved successful in the identification of seven chemicals as novel inhibitors of lysosomal acid lipase (Rosenbaum et al, Biochim. Biophys. Acta. 2009, 1791:1155–1165).  相似文献   
55.
Persistent viruses are kept in check by specific lymphocytes. The clonal T cell receptor (TCR) repertoire against Epstein-Barr virus (EBV), once established following primary infection, exhibits a robust stability over time. However, the determinants contributing to this long-term persistence are still poorly characterized. Taking advantage of an in vivo clinical setting where lymphocyte homeostasis was transiently perturbed, we studied EBV antigen-specific CD8 T cells before and after non-myeloablative lympho-depleting chemotherapy of melanoma patients. Despite more advanced T cell differentiation, patients T cells showed clonal composition comparable to healthy individuals, sharing a preference for TRBV20 and TRBV29 gene segment usage and several co-dominant public TCR clonotypes. Moreover, our data revealed the presence of relatively few dominant EBV antigen-specific T cell clonotypes, which mostly persisted following transient lympho-depletion (TLD) and lymphocyte recovery, likely related to absence of EBV reactivation and de novo T cell priming in these patients. Interestingly, persisting clonotypes frequently co-expressed memory/homing-associated genes (CD27, IL7R, EOMES, CD62L/SELL and CCR5) supporting the notion that they are particularly important for long-lasting CD8 T cell responses. Nevertheless, the clonal composition of EBV-specific CD8 T cells was preserved over time with the presence of the same dominant clonotypes after non-myeloablative chemotherapy. The observed clonotype persistence demonstrates high robustness of CD8 T cell homeostasis and reconstitution.  相似文献   
56.
Recent studies have suggested a protective role of physiological β-amyloid autoantibodies (Aβ-autoantibodies) in Alzheimer’s disease (AD). However, the determination of both free and dissociated Aβ-autoantibodies in serum hitherto has yielded inconsistent results regarding their function and possible biomarker value. Here we report the application of a new sandwich enzyme-linked immunosorbent assay (ELISA) for the determination of antigen-bound Aβ-autoantibodies (intact Aβ-IgG immune complexes) in serum and cerebrospinal fluid (CSF) of a total number of 112 AD patients and age- and gender-matched control subjects. Both serum and CSF levels of Aβ-IgG immune complexes were found to be significantly higher in AD patients compared to control subjects. Moreover, the levels of Aβ-IgG complexes were negatively correlated with the cognitive status across the groups, increasing with declining cognitive test performance of the subjects. Our results suggest a contribution of IgG-type autoantibodies to Aβ clearance in vivo and an increased immune response in AD, which may be associated with deficient Aβ-IgG removal. These findings may contribute to elucidating the role of Aβ-autoantibodies in AD pathophysiology and their potential application in AD diagnosis.  相似文献   
57.
High risk human papillomaviruses (hr-HPV) are known to be the etiological agents of cervical cancer disease. On the other hand, other cofactors are considered to be important in cervix carcinogenesis. Mutations in mitochondrial DNA (mtDNA) as well as alterations in mtDNA content have been reported in numerous cancers examined to date. The D-loop region has been shown to be a mutational "hot spot" in human cancer. In order to evaluate the role of mtDNA mutations in cervical lesions progression, cervical specimens (from 79 women, 29-65 years old) were investigated. DNA was isolated (High Pure PCR Template, Roche Diagnostics) from cervical cells from patients with different cytology (normal cervical epithelium, ASCUS-Atypical Squamous Cells of Undetermined Significance, LGSIL-Low-Grade Intraepithelial Lesion, HGSIL-High-Grade Intraepithelial Lesion and SCC-Squamous Cell Carcinoma) and tested for HPV DNA presence (Linear Array HPV Genotyping Test, Roche Diagnostics). To elucidate a causative role of mtDNA in cervical lesions, mtDNA mutations were investigated using Mutector mtDNA kit (TrimGen Corporation). In patients with normal and ASCUS cytology, mtDNA mutations were absent. 16.66% of LGSIL patients presented mutations in D-loop region whereas 28.57% HGSIL cases showed mutations in mtDNA. Mutations were detected in 66.66% cases of SCC cases. These studies provide strong evidence that instability in the D-loop region of mtDNA may be involved in cervical dysplasia. We suggested that mtDNA mutations may play a role in cervical precursor lesions and cancer but their role in the mechanism of carcinogenesis remains to be solved.  相似文献   
58.
Last consensus in celiac disease in 2008 conducted under the aegis of the European Society of Pediatric Gastroenterology, Hepatology and Nutrition jointly with North American Society of Pediatric Gastroenterology, Hepatology and Nutrition reveals the following: "celiac disease is a chronic immune-mediated enteropathy characterized by sensitization to gluten. That can affect any organ or system, with a wide range of clinical manifestations of variable severity". Thus, in recent years, clinical picture of celiac disease has changed the old paradigm--bowel disease with villous atrophy and malnutrition, being replaced with the new paradigm--multi-organ autoimmune disease, affecting many organs and systems throughout but with more less specific symptoms, which undiagnosed leads to delayed diagnosis, at a late-onset disease and long-term major complications as the risk of cancer. According to this consensus "the serological diagnosis of celiac disease is based on high sensitivity and specificity tests", but in line with changing clinical features of celiac disease, its diagnosis has undergone significant changes in recent years. These changes in the diagnosis of celiac disease, we have decided to analyze them.  相似文献   
59.
A multikinase inhibitor of the Raf/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway, sorafenib, is increasingly being used in the management of hepatocellular carcinoma, and its combination with conventional chemotherapeutics has stimulated particular interest. Although the combination of sorafenib with doxorubicin (DOX) is presently being investigated in a phase III randomized trial, little is known about the molecular mechanisms of their interaction. Because DOX causes cell death through upregulation of the MEK/ERK pathway, and sorafenib has an opposite influence on the same cascade, we hypothesized that co-treatment with these drugs may lead to an antagonistic effect. DOX treatment arrested proliferation and induced autophagic cell death in Hep3B cells, whereas apoptotic changes were not conspicuous. Sorafenib alone affected viability and caused massive mitochondrial degradation. However, when added together with DOX, sorafenib facilitated cell cycle progression, increased survival, and reduced autophagy. To evaluate the molecular mechanisms of this phenomenon, we examined the expression of ERK1/2, protein kinase B (Akt), and cyclin D1, as well as the members of Bcl-2 family. ERK1/2 activation induced by DOX was suppressed by sorafenib. Similarly, ERK targeting with the selective inhibitor U0126 impaired DOX-induced toxicity. Treatment with sorafenib, either alone or in combination with DOX, resulted in Akt activation. The role of sorafenib-induced degradation of cyclin D1 in the suppression of DOX efficiency is discussed. In conclusion, MEK/ERK counteraction, stimulation of survival via Akt and dysregulation of cyclin D1 could contribute to the escape from DOX-induced autophagy and thus promote cancer cell survival. The use of MEK/ERK inhibitors in combination with chemotherapeutics, intended to enhance anticancer efficacy, requires the consideration of possible antagonistic effects.  相似文献   
60.
Mutations in the methyl-CpG-binding protein 2 (MECP2) gene are associated with Rett syndrome (RTT). The MECP2 gene has some unique characteristics: (1) it is mainly affected by de novo mutations, due to recurrent independent mutational events in a defined "hot spot" regions or positions; (2) complex mutational events along a single allele are frequently found in this gene; (3) most mutations arise on paternal X chromosome. The recurrent point mutations involve mainly CpG dinucleotides, where C>T transitions are explained by methylation-mediated deamination. The complex mutational events might be explained by the genomic architecture of the region involving the MECP2 gene. The finding that most spontaneous mutations arise on paternal X-chromosome supports the higher contribution of replication-mediated mechanism of mutagenesis. We present 9 types of mutations in the MECP2 gene, detected in a group of 22 Bulgarian and 6 Romanian classical RTT patients. Thirteen patients were clarified on molecular level (46.4%). The point mutations in our sample account for 61.5%. One intraexonic deletion was detected in the present study (7.7%). One novel insertion c.321_322insGAAG, p.(Lys107_Leu108insGluAlafs2*) was found (7.7%). Large deletions and complex mutations account for 23%. A novel complex mutational event c.[584_624del41insTT; 638delTinsCA] was detected in a Romanian patient. We discuss different types of the MECP2 mutations detected in our sample in the light of the possible mechanisms of mutagenesis. Complex gene rearrangements involving a combination of deletions and insertions have always been most difficult to detect, to specify precisely and hence to explain in terms of their underlying mutational mechanisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号