首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2030篇
  免费   154篇
  2022年   8篇
  2021年   22篇
  2020年   14篇
  2019年   15篇
  2018年   17篇
  2017年   18篇
  2016年   48篇
  2015年   70篇
  2014年   96篇
  2013年   114篇
  2012年   159篇
  2011年   196篇
  2010年   140篇
  2009年   103篇
  2008年   112篇
  2007年   96篇
  2006年   86篇
  2005年   77篇
  2004年   87篇
  2003年   83篇
  2002年   76篇
  2001年   13篇
  2000年   20篇
  1999年   20篇
  1998年   35篇
  1997年   16篇
  1996年   21篇
  1995年   16篇
  1994年   18篇
  1993年   13篇
  1992年   12篇
  1991年   23篇
  1990年   18篇
  1989年   13篇
  1988年   17篇
  1987年   14篇
  1985年   15篇
  1984年   22篇
  1983年   10篇
  1982年   12篇
  1981年   11篇
  1980年   14篇
  1978年   7篇
  1977年   7篇
  1976年   7篇
  1975年   7篇
  1974年   8篇
  1973年   8篇
  1971年   8篇
  1970年   7篇
排序方式: 共有2184条查询结果,搜索用时 31 毫秒
901.
Lateral gene transfers (LGT) (also called horizontal gene transfers) have been a major force shaping the Thermosipho africanus TCF52B genome, whose sequence we describe here. Firmicutes emerge as the principal LGT partner. Twenty-six percent of phylogenetic trees suggest LGT with this group, while 13% of the open reading frames indicate LGT with Archaea.Thermosipho africanus TCF52B was isolated from produced fluids of a high-temperature oil reservoir in the North Sea using fish waste as the only substrate (4). Phylogenetic analyses based on the 16S rRNA gene sequence and DNA-DNA hybridization placed it as a strain of Thermosipho africanus, which was first isolated from a shallow marine hydrothermal system in Djibouti, Africa (8, 21).The complete genome sequence of this strain was determined by the conventional whole-genome shotgun strategy. Genomic libraries containing 1- to 4-kb and 40-kb fragments were constructed, and sequence chromatograms were produced using a MegaBACE 1000 capillary DNA sequencer (GE Healthcare). Nucleotide skews were computed as described previously (11). Automated open reading frame (ORF) identification and annotation were performed using the annotation software Manatee made available by TIGR (23). Pseudogenes were identified by doing BLAST searches of neighboring ORFs with the same or similar annotations and by using the program Psi-phi (9, 10), and clustered regularly interspaced short palindromic repeat loci (CRISPRs) were identified using the web site http://crispr.u-psud.fr/crispr/CRISPRHomePage.php with the default parameters (6). Maximum-likelihood (ML) trees (WAG [Γ+Ι model, four categories]) were constructed from protein-coding ORFs using PHYML and the PhyloGenie package (5). Recently, several Thermotogales genomes have become available in GenBank. As these genomes had not been published yet, we did not include them in any “genome-scale” analyses (i.e., the phylogenetic analyses). We did, however, include them in the BLAST analyses of mobile Thermosipho africanus genes.The genome of Thermosipho africanus strain TCF52B is a single circular chromosome consisting of 2,016,657 bp with an average G+C content of 30.8%. Strand asymmetries, such as GC skew and tetramer skews, are pronounced and show two clear singularity points, located at roughly 8 kb and 1033 kb from the +1 site (see Fig. S1 in the supplemental material). Since these two points are diametrically opposed on the circular chromosome, dividing it into two halves with opposite compositional skews, they make good candidates for the putative origin and termination of replication. The 1,033-kb region is likely to harbor the origin, since GC skew becomes positive past this location, as in most bacterial genomes with a known origin.The genome contains 2,000 potential coding sequences, of which 1913 are putative protein-coding ORFs, 30 are putatively assigned as pseudogenes, and 57 encode RNA. A comparison to the genome of Thermotoga maritima is given in Table Table1.1. The Thermosipho africanus genome is about 156 kb larger than the Thermotoga maritima genome and carries 36 more ORFs. The genome contains duplicated regions comprising paralogous gene copies, CRISPRs, and mobile genetic elements, which collectively provide considerable indirect evidence for genomic instability and acquisition of exogenous genetic information.

TABLE 1.

General features of the Thermosipho africanus genome, with a comparison to Thermotoga maritima
FeatureThermosipho africanusThermotoga maritima
Length of sequence (bp)2,016,6571,860,725
G+C content (%)30.846
No. of:
    ORFs1,9131,877
    Pseudogenes (disrupted reading frame)30 (17 transposase and integrases)3 (1 transposase) (28 according to http://www-bio3d-igbmc.u-strasbg.fr/ICDS/)
    rRNAs3 16S-23S-5S1 16S-23S-5S
    tRNAs48 (11 clusters, 19 single genes)46 (10 clusters, 19 single genes)
CRISPR direct repeats
    CRISPR 1, 2, 4GTTTAGAATCTACCTATGAGGAATGAAAACTTTCCATACCTCTAAGGAATTATTGAAACA
    CRISPR 3, 5, 6, 7, 11GTTTTCATTCCTCATAGGTAGATTCTAAAC
    CRISPR 8, 9, 12RTTTCAATTCCTRCAAGGTAAGGTACAAAC
    CRISPR 10GTTTCAATCCCTAATAGGTATGCTAAAAAC
Open in a separate windowCRISPR structures comprise direct genomic repeats of 24 to 47 bp length separated by variable-length spacers (1, 13, 22) and are thought to function as a prokaryotic “immune system.” Due to their patchy distribution in prokaryotes, CRISPRs are often assumed to undergo frequent lateral transfer. Thermosipho africanus displays 12 CRIPSRs spread over its chromosome (Fig. (Fig.1),1), compared to 8 such loci in Thermotoga maritima (15). These 12 CRISPRs fall into four groups based on the sequence of their direct repeats (Table (Table1).1). CRISPR-associated proteins, encoded by CRISPR-associated (Cas) genes near CRISPR repeats, function somehow in CRISPR biology, and Cas gene phylogenies provide some of the most compelling evidence for CRISPR mobility (7). In Thermosipho africanus their phylogenetic origins appear to be especially complex. Most interestingly, they do not show strong affinities with other Thermotogales sequences. Instead, although Thermotoga maritima MSB8 harbors many Cas genes (26 in reference 7), in almost every case these do not branch together in ML trees; they are sisters in only 3 of 25 trees (Thermosipho africanus has 30 Cas genes).Open in a separate windowFIG. 1.Distribution of CRISPR loci and mobile elements along the Thermosipho africanus genome, as well as phylogenetic “affiliation” of genes along the chromosome and the GC contents of genes. Outer circle, phylogenetic affiliation of the sister of Thermosipho africanus in phylogenetic trees estimated from predicted ORFs. The following color coding for the sister in the phylogenetic tree was used: green, self; red, Thermotogales; yellow, Firmicutes; blue, Archaea; orange, “others” as defined in Fig. Fig.2;2; pink, complex; gray, complex including Thermotogales; light blue, no tree. Second and third circles, distribution of the mobile elements along the Thermosipho africanus chromosome. Mobile elements in forward orientation are indicated in red, and mobile elements in reverse orientation are indicated in blue. Fourth circle, distribution of CRISPRS and Cas genes along the genome. CRISPR repeats are in green, and Cas genes are in purple. Innermost circle, distribution of gene GC content. Genes having a GC content above the mean are in red, while those with a GC content below the mean are in green. The three spikes in GC content correspond to rRNA operons.Seventy-eight ORFs were annotated as encoding transposases or integrases, and at least 61 of these are likely to be active genes (Fig. (Fig.1).1). (In contrast, the Thermotoga maritima genome contains only 12 ORFs annotated as encoding transposases.) All 78 fall into one of eight groups of highly similar sequences, and each of the 78 is sister to another (see Table S1 in the supplemental material), indicating recent intragenomic transposition and/or lateral gene transfers (LGT) from a closely related lineage. Remarkably, only four of these eight families had homologs in other Thermotogales genomes, and there are no homologs in its closest relative, Thermosipho melanesiensis (see Table S1 in the supplemental material). We did, however, detect likely inactive homologs in Thermosipho melanesiensis for three of the groups (see Table S1 in the supplemental material).We attempted to calculate ML phylogenetic trees from each of the 1,913 ORFs and obtained trees from 1,578 (82%), using the PhyloGenie package. The distribution of the “immediate sisters” (nearest neighbors) of Thermosipho africanus in the trees is shown in Fig. Fig.2.2. In 60% of the trees the sister was another Thermotogales bacterium, in most cases Thermotoga maritima, since this was the only other complete Thermotogales genome included in the analysis. For 9% of the treeable ORFs, the sister gene originated from within its own genome.Open in a separate windowFIG. 2.Distribution of Thermosipho africanus sister taxon or clade in 1,578 phylogenetic trees for potentially protein-coding ORFs. “Other group” means that the organism(s) in the sister group belonged to a taxonomic group that was not Thermotogales, Firmicutes, or Archaea. “Complex” means that the sister clade was composed of organisms from several different taxonomic groups, and “complex including Thermotogales” means that another Thermotogales sequence was included in this clade.The phylogenetic analysis revealed that 58 ORFs (3.7%) had Archaea as immediate sister in the tree. This is considerably lower than the 24% first reported for the Thermotoga maritima genome (16). A lower value was to be expected, for two reasons. First, growth of the bacterial gene and genome data has outpaced that for Archaea, so that bacterial best hits to patchily distributed genes with ambiguous phylogenetic signals have become differentially more likely. Second, the Thermotoga maritima genome will itself be sister for all or most Thermosipho africanus genes that were transferred prior to their divergence and are still present in both.We therefore visually inspected each of the trees in order to also obtain information on LGT that predate the split between Thermosipho and Thermotoga (see Fig. S2 in the supplemental material). This also allowed us to detect transfers where the genes involved have later been duplicated in the Thermosipho africanus genome (so that the sister in the tree was another Thermosipho africanus gene.) This analysis suggested that a total of 202 ORFs (∼13%) have been involved in LGT with Archaea (including both ancient and recent events). Among these, 125 (∼62%) also involve Thermotoga maritima, while 77 (∼38%) have no close homolog in Thermotoga maritima. This latter number is of course an overestimate of the number of potential recent transfers, as many of the transferred genes might have been lost by Thermotoga maritima MSB8, but these numbers do suggest that LGT between the Thermotogales and the Archaea is a still an ongoing process. Thermophilic Archaea such as members of the genera Archaeoglobus (2) and Thermococcus (3, 14) are among the few other organisms considered to be native to oil reservoirs, the habitat from which this strain was isolated (4). Moreover, a recent reanalysis of the Thermotoga maritima genome reported 11.3% archaeal genes in this genome, consistent with our findings (20).A large proportion of the ORFs have a close phylogenetic relationship with Firmicutes, with 8% of the ORFs having Firmicutes as sister in the tree (Fig. (Fig.2).2). This connection has also been observed earlier in phylogenetic analyses (17, 19, 20). To further investigate this, we performed the same analysis of the trees in which Thermosipho africanus clusters with Firmicutes as we did for Archaea (see Fig. S3 in the supplemental material). In total there are 417 (26%) trees that suggest LGT between these lineages. For 244 (58.5%) of these trees the LGT predated the Thermosipho/Thermotoga split, as there was also a close homolog in Thermotoga maritima MSB8, while there was no close Thermotoga maritima homolog in 173 (41.5%) of the trees. Moreover, Thermotogales and Firmicutes were sisters, rather than nested one within the other, in 62 (3.9%) of the trees. One could interpret this as evidence that these two phyla are indeed sisters or that there has been substantial transfer between them, though the true phylogenetic position of the Thermotogales is elsewhere (likely deeper) in the tree. Alternatively, of course, the notion of a unique “true” phylogenetic position could be questioned.A high level of LGT between Thermotogales and Firmicutes might in any case be expected, since some members of the Firmicutes, e.g., the Thermoanaerobales, frequently cohabit with Thermotogales in natural environments. For instance, Thermotogales and the Firmicutes genera Thermoanaerobacter and Desulfotomaculum are the only bacteria thought to be indigenous to oil reservoirs (4, 12, 18). Moreover, most of the mobile elements found scattered in the Thermosipho africanus genome seem to have recently originated from Firmicutes, further supporting the importance of LGT between these lineages.  相似文献   
902.
In 2007 the Systematic and Evolutionary Biogeographical Association (SEBA) wrote and ratified the first draft of the International Code of Area Nomenclature (ICAN), which was posted subsequently on the SEBA website. The ICAN was published, along with an explanatory discussion, by Ebach et al. ( Journal of Biogeography , 35 , 2008, 1153–1157), an article that is the subject of criticism by Zaragüeta-Bagils et al. ( Journal of Biogeography , 36 , 2009, 1617–1618). We welcome discussion of the issues raised by these authors and respond to them briefly here. For many reasons, we reject the proposition that implementation of the ICAN be postponed until it is flawless. The ICAN has already been implemented. Further, it is the nature of nomenclatural codes to be proposed and then revised periodically to suit our applications. Most importantly, standardization of area names in biogeography is long overdue.  相似文献   
903.
904.
Primate female allogrooming models based on biological marketstheory predict that grooming is "time matched" within bouts,that is, the amount of time the first female grooms predictsthe amount of time the second one grooms. The models also predictthat when female–female contest competition is weak, groomingis traded for grooming, but when female–female contestcompetition is strong, grooming may be traded for other commoditiessuch as feeding tolerance, and grooming discrepancy betweenmembers of dyads is rank related. We tested these predictionsusing data collected from adult and subadult female gray-cheekedmangabeys (Lophocebus albigena) (N = 26) in 5 groups in KibaleNational Park, Uganda. We found that, overall, females reciprocatedin 33% of grooming bouts. Among reciprocated bouts, femalesin all 5 groups showed time matching. In 2 groups, we also foundrank-related grooming discrepancies but showing opposite patternsto each other. Consistent with predictions based on biologicalmarkets theory, these groups may have been under greater feedingcompetition, revealed more by adjustments in ranging behaviorthan increased agonistic rates. Although these results supportcurrent allogrooming models, they also suggest that the modelsmay become more robust if the influence of scramble competitionis incorporated. In addition, they emphasize the flexibilityand dynamic nature of female competitive relationships withinthe same population of primates.  相似文献   
905.
Caldicellulosiruptor obsidiansis OB47T (ATCC BAA-2073, JCM 16842) is an extremely thermophilic, anaerobic bacterium capable of hydrolyzing plant-derived polymers through the expression of multidomain/multifunctional hydrolases. The complete genome sequence reveals a diverse set of carbohydrate-active enzymes and provides further insight into lignocellulosic biomass hydrolysis at high temperatures.Members of the genus Caldicellulosiruptor within the order Clostridiales can solubilize cellulose at extremely thermophilic growth temperatures (65 to 80°C). Caldicellulosiruptor obsidiansis OB47T was isolated from Obsidian Pool, Yellowstone National Park, in enrichment cultures containing dilute acid-pretreated switchgrass as the primary carbon and energy source for cultivation (5). High-temperature saccharification can promote higher hydrolysis rates while reducing cooling costs following biomass pretreatment and suppressing contamination in reactors (9). Given the organism''s rapid growth on cellulosic substrates and ability to use a wide range of plant-derived sugars, a complete genome sequence was determined using a sequencing-by-synthesis approach.The genome of C. obsidiansis OB47T was sequenced by the U.S. Department of Energy (DOE) Joint Genome Institute (JGI) using a combination of Illumina (1) and 454 technologies (8). All of the general aspects of library construction and sequencing performed at the JGI can be found at http://www.jgi.doe.gov/. Illumina sequencing data were assembled with VELVET (10), and the consensus sequences were shredded into 1.5-kbp overlapped fake reads and assembled together with the 454 data. The initial Newbler assembly contained 64 contigs in two scaffolds. The initial 454 assembly was converted into a Phrap assembly by making fake reads from the consensus and collecting the read pairs in the 454 paired-end library. The Phred/Phrap/Consed software package was used for sequence assembly and quality assessment (2-4) in the following finishing process. Illumina data were used to correct potential base errors and increase consensus quality using the Polisher software developed at the JGI (Alla Lapidus, unpublished data). After the shotgun stage, reads were assembled with parallel Phrap (High Performance Software, LLC). Possible misassemblies were corrected with gapResolution (Cliff Han, unpublished data), Dupfinisher (6), or sequencing of cloned bridging PCR fragments with subcloning. Gaps between contigs were closed by editing in Consed, by PCR, and by Bubble PCR primer walks. A total of 773 additional reactions and seven shatter libraries were necessary to close gaps and to raise the quality of the finished sequence. The genome was annotated at Oak Ridge National Laboratory using the automated annotation pipeline, which is driven by the gene prediction algorithm Prodigal (7). Annotation quality was verified by the JGI.Although many well-characterized bacteria and fungi can use cellulose, C. obsidiansis was selected and isolated specifically for its ability to deconstruct potential bioenergy feedstocks (e.g., pretreated switchgrass or Populus sp.). Through high-throughput sequencing of novel strains relevant to different aspects of renewable energy production, genome-enabled technologies can be used to discover important cellular properties (such as the secretion of hydrolytic enzymes). Making the genome sequence of C. obsidiansis OB47T available will allow comprehensive comparisons with other members of the genus and enable further investigation into the mechanisms employed by microorganisms to solubilize lignocellulosic materials at elevated temperatures.  相似文献   
906.

Background

Mater and Padi6 are maternal effect genes that are first expressed during oocyte growth and are required for embryonic development beyond the two-cell stage in the mouse. We have recently found that PADI6 localizes to, and is required for the formation of, abundant fibrillar Triton X-100 (Triton) insoluble structures termed the oocyte cytoplasmic lattices (CPLs). Given their similar expression profiles and mutant mouse phenotypes, we have been testing the hypothesis that MATER also plays a role in CPL formation and/or function.

Methodology/Findings

Herein, we show that PADI6 and MATER co-localize throughout the oocyte cytoplasm following Triton extraction, suggesting that MATER co-localizes with PADI6 at the CPLs. Additionally, the solubility of PADI6 was dramatically increased in Matertm/tm oocytes following Triton extraction, suggesting that MATER is involved in CPL nucleation. This prediction is supported by transmission electron microscopic analysis of Mater+/+ and Matertm/tm germinal vesicle stage oocytes which illustrated that volume fraction of CPLs was reduced by 90% in Matertm/tm oocytes compared to Mater+/+ oocytes.

Conclusions

Taken together, these results suggest that, similar to PADI6, MATER is also required for CPL formation. Given that PADI6 and MATER are essential for female fertility, these results not only strengthen the hypothesis that the lattices play a critical role in mediating events during the oocyte-to-embryo transition but also increase our understanding of the molecular nature of the CPLs.  相似文献   
907.
Aminomonas paucivorans Baena et al. 1999 is the type species of the genus Aminomonas, which belongs to the family Synergistaceae. The species is of interest because it is an asaccharolytic chemoorganotrophic bacterium which ferments quite a number of amino acids. This is the first finished genome sequence (with one gap in a rDNA region) of a member of the genus Aminomonas and the third sequence from the family Synergistaceae. The 2,630,120 bp long genome with its 2,433 protein-coding and 61 RNA genes is a part of the GenomicEncyclopedia ofBacteria andArchaea project.  相似文献   
908.
Thermaerobacter marianensis Takai et al. 1999 is the type species of the genus Thermaerobacter, which belongs to the Clostridiales family Incertae Sedis XVII. The species is of special interest because T. marianensis is an aerobic, thermophilic marine bacterium, originally isolated from the deepest part in the western Pacific Ocean (Mariana Trench) at the depth of 10.897m. Interestingly, the taxonomic status of the genus has not been clarified until now. The genus Thermaerobacter may represent a very deep group within the Firmicutes or potentially a novel phylum. The 2,844,696 bp long genome with its 2,375 protein-coding and 60 RNA genes consists of one circular chromosome and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.  相似文献   
909.
Olsenella uli (Olsen et al. 1991) Dewhirst et al. 2001 is the type species of the genus Olsenella, which belongs to the actinobacterial family Coriobacteriaceae. The species is of interest because it is frequently isolated from dental plaque in periodontitis patients and can cause primary endodontic infection. The species is a Gram-positive, non-motile and non-sporulating bacterium. The strain described in this study was isolated from human gingival crevices. This is the first completed sequence of the genus Olsenella and the fifth sequence from a member of the family Coriobacteriaceae. The 2,051,896 bp long genome with its 1,795 protein-coding and 55 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.  相似文献   
910.
Acidaminococcus fermentans (Rogosa 1969) is the type species of the genus Acidaminococcus, and is of phylogenetic interest because of its isolated placement in a genomically little characterized region of the Firmicutes. A. fermentans is known for its habitation of the gastrointestinal tract and its ability to oxidize trans-aconitate. Its anaerobic fermentation of glutamate has been intensively studied and will now be complemented by the genomic basis. The strain described in this report is a nonsporulating, nonmotile, Gram-negative coccus, originally isolated from a pig alimentary tract. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of a member of the family Acidaminococcaceae, and the 2,329,769 bp long genome with its 2,101 protein-coding and 81 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号