首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   523篇
  免费   75篇
  2021年   3篇
  2017年   6篇
  2016年   5篇
  2015年   12篇
  2014年   18篇
  2013年   24篇
  2012年   21篇
  2011年   22篇
  2010年   22篇
  2009年   13篇
  2008年   20篇
  2007年   24篇
  2006年   19篇
  2005年   16篇
  2004年   21篇
  2003年   22篇
  2002年   19篇
  2001年   14篇
  2000年   19篇
  1999年   15篇
  1998年   6篇
  1997年   6篇
  1996年   13篇
  1995年   5篇
  1994年   9篇
  1993年   6篇
  1992年   14篇
  1991年   11篇
  1990年   15篇
  1989年   10篇
  1988年   20篇
  1987年   9篇
  1986年   8篇
  1985年   7篇
  1984年   3篇
  1983年   10篇
  1982年   6篇
  1981年   8篇
  1980年   5篇
  1979年   8篇
  1978年   10篇
  1977年   6篇
  1975年   9篇
  1974年   4篇
  1973年   4篇
  1972年   6篇
  1971年   6篇
  1968年   3篇
  1937年   2篇
  1915年   3篇
排序方式: 共有598条查询结果,搜索用时 31 毫秒
181.
During growth on crystalline cellulose, the thermophilic bacterium Caldicellulosiruptor bescii secretes several cellulose-degrading enzymes. Among these enzymes is CelA (CbCel9A/Cel48A), which is reported as the most highly secreted cellulolytic enzyme in this bacterium. CbCel9A/Cel48A is a large multi-modular polypeptide, composed of an N-terminal catalytic glycoside hydrolase family 9 (GH9) module and a C-terminal GH48 catalytic module that are separated by a family 3c carbohydrate-binding module (CBM3c) and two identical CBM3bs. The wild-type CbCel9A/Cel48A and its truncational mutants were expressed in Bacillus megaterium and Escherichia coli, respectively. The wild-type polypeptide released twice the amount of glucose equivalents from Avicel than its truncational mutant that lacks the GH48 catalytic module. The truncational mutant harboring the GH9 module and the CBM3c was more thermostable than the wild-type protein, likely due to its compact structure. The main hydrolytic activity was present in the GH9 catalytic module, while the truncational mutant containing the GH48 module and the three CBMs was ineffective in degradation of either crystalline or amorphous cellulose. Interestingly, the GH9 and/or GH48 catalytic modules containing the CBM3bs form low-density particles during hydrolysis of crystalline cellulose. Moreover, TM3 (GH9/CBM3c) and TM2 (GH48 with three CBM3 modules) synergistically hydrolyze crystalline cellulose. Deletion of the CBM3bs or mutations that compromised their binding activity suggested that these CBMs are important during hydrolysis of crystalline cellulose. In agreement with this observation, seven of nine genes in a C. bescii gene cluster predicted to encode cellulose-degrading enzymes harbor CBM3bs. Based on our results, we hypothesize that C. bescii uses the GH48 module and the CBM3bs in CbCel9A/Cel48A to destabilize certain regions of crystalline cellulose for attack by the highly active GH9 module and other endoglucanases produced by this hyperthermophilic bacterium.  相似文献   
182.
Microbial fuel cells (MFCs) were used to monitor metabolism changes in Clostridium acetobutylicum fermentations. When MFCs were inoculated with C. acetobutylicum, they generated a unique voltage output pattern where two distinct voltage peaks occurred over a weeklong period. This result was markedly different to previously studied organisms which usually generate one sustained voltage peak. Analysis of the fermentation products indicated that the dual voltage peaks correlated with glucose metabolism. The first voltage peak correlated with acidogenic metabolism (acetate and butyrate production) and the second peak with solventogenic metabolism (acetone and butanol production). This demonstrates that MFCs can be applied as a novel tool to monitor the shift from acid production to solvent production in C. acetobutylicum.  相似文献   
183.
Ruminococcus albus 8 is a ruminal bacterium capable of metabolizing hemicellulose and cellulose, the major components of the plant cell wall. The enzymes that allow this bacterium to capture energy from the two polysaccharides, therefore, have potential application in plant cell wall depolymerization, a process critical to biofuel production. For this purpose, a partial genome sequence of R. albus 8 was generated. The genomic data depicted a bacterium endowed with multiple forms of plant cell wall-degrading enzymes. The endoxylanases of R. albus 8 exhibited diverse modular architectures, including incorporation of a catalytic module, a carbohydrate binding module, and a carbohydrate esterase module in a single polypeptide. The accessory enzymes of xylan degradation were a β-xylosidase, an α-l-arabinofuranosidase, and an α-glucuronidase. We hypothesized that due to the chemical complexity of the hemicellulose encountered in the rumen, the bacterium uses multiple endoxylanases, with subtle differences in substrate specificities, to attack the substrate, while the accessory enzymes hydrolyze the products to simple sugars for metabolism. To test this hypothesis, the genes encoding the predicted endoxylanases were expressed, and the proteins were biochemically characterized either alone or in combination with accessory enzymes. The different endoxylanase families exhibited different patterns of product release, with the family 11 endoxylanases releasing more products in synergy with the accessory enzymes from the more complex substrates. Aside from the insights into hemicellulose degradation by R. albus 8, this report should enhance our knowledge on designing effective enzyme cocktails for release of fermentable sugars in the biofuel industry.  相似文献   
184.
NMR techniques have been used to characterise the effects of a lipid-like post-translational modification on barley lipid transfer protein (LTP1b). NMR chemical shift data indicate that the lipid-like molecule lies in the hydrophobic cavity of LTP1b, with Tyr 79 being displaced to accommodate the ligand in the cavity. The modified protein has a reduced level of backbone amide hydrogen exchange protection, presumably reflecting increased dynamics in the protein. This may result from a loosening of the protein structure and may explain the enhanced surface properties observed for LTP1b.  相似文献   
185.
Prolonged heating of holo bovine alpha-lactalbumin (BLA) at 80 degrees C in pH 7 phosphate buffer in the absence of a thiol initiator improves the surface activity of the protein at the air:water interface, as determined by surface tension measurements. Samples after 30, 60, and 120 min of heating were analyzed on cooling to room temperature. Size-exclusion chromatography shows sample heterogeneity that increases with the length of heating. After 120 min of heating monomeric, dimeric, and oligomeric forms of BLA are present, with aggregates formed from disulfide bond linked hydrolyzed protein fragments. NMR characterization at pH 7 in the presence of Ca2+ of the monomer species isolated from the sample heated for 120 min showed that it consisted of a mixture of refolded native protein and partially folded protein and that the partially folded protein species had spectral characteristics similar to those of the pH 2 molten globule state of the protein. Circular dichroism spectroscopy showed that the non-native species had approximately 40% of the alpha-helical content of the native state, but lacked persistent tertiary interactions. Proteomic analysis using thermolysin digestion of three predominant non-native monomeric forms isolated by high-pressure liquid chromatography indicated the presence of disulfide shuffled isomers, containing the non-native 61-73 disulfide bond. These partially folded, disulfide shuffled species are largely responsible for the pronounced improvement in surface activity of the protein on heating.  相似文献   
186.
187.
188.

Introduction

The aim of the present study was to investigate the possible role of CD40 and CD40 ligand (CD40LG) genes in the susceptibility and phenotype expression of systemic sclerosis (SSc).

Methods

In total, 2,670 SSc patients and 3,245 healthy individuals from four European populations (Spain, Germany, The Netherlands, and Italy) were included in the study. Five single-nucleotide polymorphisms (SNPs) of CD40 (rs1883832, rs4810485, rs1535045) and CD40LG (rs3092952, rs3092920) were genotyped by using a predesigned TaqMan allele-discrimination assay technology. Meta-analysis was assessed to determine whether an association exists between the genetic variants and SSc or its main clinical subtypes.

Results

No evidence of association between CD40 and CD40LG genes variants and susceptibility to SSc was observed. Similarly, no significant statistical differences were observed when SSc patients were stratified by the clinical subtypes, the serologic features, and pulmonary fibrosis.

Conclusions

Our results do not suggest an important role of CD40 and CD40LG gene polymorphisms in the susceptibility to or clinical expression of SSc.  相似文献   
189.
In species that provide parental care, care for offspring is often accompanied by an increase in locomotor activity and a decrease in feeding opportunities which can negatively impact endogenous energy reserves. Depletion of parental energy stores and declines in nutritional condition can cause physiological disturbances, such as an imbalance between free radical production and available antioxidants, known as oxidative stress. Using the teleost smallmouth bass (Micropterus dolomieu) as a model, we tested if the energetic challenge associated with sole paternal care was associated with oxidative stress. Blood samples from parental males were collected throughout parental care, during egg, embryo, and larval stages of offspring development, and assayed for both antioxidant capacity and oxidative damage. A reduction in oxygen radical absorbance capacity was observed during the parental care period, indicating a decrease in resistance to oxidative stress. Although no change was observed in the reduced:total thiol ratio, a significant increase in the concentration of both oxidized and total thiols occurred during the parental care period. No increase in the oxidative stress markers 8-hydroxy-2-deoxyguanosine, protein carbonyls and lipid peroxides was observed. We concluded that oxidative stress did not occur as a result of parental care in the male smallmouth bass. This study provides evidence that participation in energetically taxing activities, such as parental care, can result in a decrease in antioxidant resources, but may not always result in oxidative stress.  相似文献   
190.
Embryonic Stem Cells not only hold a lot of potential for use in regenerative medicine, but also provide an elegant and efficient way to study specific developmental processes and pathways in mammals when whole animal gene knock out experiments fail. We have investigated a pathway through which HDAC1 affects cardiovascular and more specifically cardiomyocyte differentiation in ES cells by controlling expression of SOX17 and BMP2 during early differentiation. This data explains current discrepancies in the role of HDAC1 in cardiovascular differentiation and sheds light into a new pathway through which ES cells determine cardiovascular cell fate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号