首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   469篇
  免费   64篇
  2021年   4篇
  2020年   4篇
  2019年   3篇
  2018年   7篇
  2017年   4篇
  2016年   11篇
  2015年   14篇
  2014年   22篇
  2013年   24篇
  2012年   14篇
  2011年   22篇
  2010年   13篇
  2009年   17篇
  2008年   22篇
  2007年   21篇
  2006年   16篇
  2005年   21篇
  2004年   21篇
  2003年   26篇
  2002年   13篇
  2001年   13篇
  2000年   15篇
  1999年   17篇
  1998年   14篇
  1997年   9篇
  1996年   11篇
  1995年   8篇
  1994年   11篇
  1993年   5篇
  1992年   8篇
  1991年   6篇
  1990年   8篇
  1989年   8篇
  1988年   4篇
  1986年   5篇
  1984年   7篇
  1983年   3篇
  1982年   6篇
  1981年   4篇
  1980年   3篇
  1979年   7篇
  1978年   3篇
  1977年   6篇
  1973年   4篇
  1972年   6篇
  1971年   4篇
  1968年   3篇
  1951年   2篇
  1912年   2篇
  1909年   3篇
排序方式: 共有533条查询结果,搜索用时 531 毫秒
111.
112.
Three mammalian genes encoding DNA ligases have been identified. However, the role of each of these enzymes in mammalian DNA metabolism has not been established. In this study, we show that two forms of mammalian DNA ligase III, alpha and beta, are produced by a conserved tissue-specific alternative splicing mechanism involving exons encoding the C termini of the polypeptides. DNA ligase III-alpha cDNA, which encodes a 103-kDa polypeptide, is expressed in all tissues and cells, whereas DNA ligase III-beta cDNA, which encodes a 96-kDa polypeptide, is expressed only in the testis. During male germ cell differentiation, elevated expression of DNA ligase III-beta mRNA is restricted, beginning only in the latter stages of meiotic prophase and ending in the round spermatid stage. In 96-kDa DNA ligase III-beta, the C-terminal 77 amino acids of DNA ligase III-alpha are replaced by a different 17- to 18-amino acid sequence. As reported previously, the 103-kDa DNA ligase III-alpha interacts with the DNA strand break repair protein encoded by the human XRCC1 gene. In contrast, the 96-kDa DNA ligase III-beta does not interact with XRCC1, indicating that DNA ligase III-beta may play a role in cellular functions distinct from the DNA repair pathways involving the DNA ligase III-alpha x XRCC1 complex. The distinct biochemical properties of DNA ligase III-beta, in combination with the tissue- and cell-type-specific expression of DNA ligase III-beta mRNA, suggest that this form of DNA ligase III is specifically involved in the completion of homologous recombination events that occur during meiotic prophase.  相似文献   
113.
Cytochrome c oxidase subunit II (COII), encoded by the mitochondrial genome, exhibits one of the most heterogeneous rates of amino acid replacement among placental mammals. Moreover, it has been demonstrated that cytochrome c oxidase has undergone a structural change in higher primates which has altered its physical interaction with cytochrome c. We collected a large data set of COII sequences from several orders of mammals with emphasis on primates, rodents, and artiodactyls. Using phylogenetic hypotheses based on data independent of the COII gene, we demonstrated that an increased number of amino acid replacements are concentrated among higher primates. Incorporating approximate divergence dates derived from the fossil record, we find that most of the change occurred independently along the New World monkey lineage and in a rapid burst before apes and Old World monkeys diverged. There is some evidence that Old World monkeys have undergone a faster rate of nonsynonymous substitution than have apes. Rates of substitution at four-fold degenerate sites in primates are relatively homogeneous, indicating that the rate heterogeneity is restricted to nondegenerate sites. Excluding the rate acceleration mentioned above, primates, rodents, and artiodactyls have remarkably similar nonsynonymous replacement rates. A different pattern is observed for transversions at four-fold degenerate sites, for which rodents exhibit a higher rate of replacement than do primates and artiodactyls. Finally, we hypothesize specific amino acid replacements which may account for much of the structural difference in cytochrome c oxidase between higher primates and other mammals.   相似文献   
114.
115.
Considerable interest has been focused on the role of myosin light chain LC(2) in the contraction of vertebrate striated muscle. A study was undertaken to further our investigations (Moss, R.L., G.G. Giulian, and M.L. Greaser, 1981, J. Biol. Chem., 257:8588-8591) of the effects of LC(2) removal upon contraction in skinned fibers from rabbit psoas muscles. Isometric tension and maximum velocity of shortening, V(max), were measured in fiber segments prior to LC(2) removal. The segments were then bathed at 30 degrees C for up to 240 min in a buffer solution containing 20 mM EDTA in order to extract up to 60 percent of the LC(2). Troponin C (TnC) was also partially removed by this procedure. Mechanical measurements were done following the EDTA extraction and the readditions of first TnC and then LC(2) to the segments. The protein subunit compositions of the same fiber segments were determined following each of these procedures by SDS PAGE of small pieces of the fiber. V(max) was found to decrease as the LC(2) content of the fiber segments was reduced by increasing the duration of extraction. EDTA treatment also resulted in substantial reductions in tension due mainly to the loss of TnC, though smaller reductions due to the extraction of LC(2) were also observed. Reversal of the order of recombination of LC(2) and TnC indicated that the reduction in V(max) following EDTA treatment was a specific effect of LC(2) removal. These results strongly suggest that LC(2) may have roles in determining the kinetics and extent of interaction between myosin and actin.  相似文献   
116.
An electrodiffusion model for plasma membrane ion transport, which takes into account the influence of high electric field strengths and ion-membrane molecule interactions, is presented and analyzed. A generalized Nernst-Planck equation for steady-state situations is derived which has electric field-dependent mobility and diffusion coefficients. Under the assumption of a constant electric field within the membrane, this equation is integrated to give a more general form of the Goldman equation. Based on this equation numerical computations of ionic chord conductance as a function of applied electric field strength were carried out for several permeant ion concentration ratios. The model is capable of yielding significantly larger rectification ratios than is the Goldman equation. Further, high field asymptotes to the current vs. electric field strength curve do not generally intersect at the origin.  相似文献   
117.
The survival of Salmonella typhimurium after a standard heat challenge at 55 degrees C for 25 min increased by several orders of magnitude when cells grown at 37 degrees C were pre-incubated at 42 degrees, 45 degrees or 48 degrees C before heating at the higher temperature. Heat resistance increased rapidly after the temperature shift, reaching near maximum levels within 30 min. Elevated heat resistance persisted for at least 10 h. Pre-incubation of cells at 48 degrees C for 30 min increased their resistance to subsequent heating at 50 degrees, 52 degrees, 55 degrees, 57 degrees or 59 degrees C. Survival curves of resistant cells were curvilinear. Estimated times for a '7D' inactivation increased by 2.6- to 20-fold compared with cells not pre-incubated before heat challenge.  相似文献   
118.
Cold-shocked Salmonella typhimurium displayed minimal medium recovery (MMR), viable counts on M9 minimal agar being much higher than those on tryptone soya yeast extract agar (TSYA). The addition of catalase to TSYA restored counts to the level found on M9 agar. Peroxide concentrations between 12 and 30 mumol/l were measured in TSYB but none was detected in M9 medium. Cold-shocked cells were sensitive to reagent hydrogen peroxide at a concentration similar to that found in TSYB. The minimal medium recovery phenomenon of cold-shocked cells is thus a manifestation of peroxide sensitivity. Changing the composition of growth media affected both cellular catalase activity and the magnitude of the MMR effect but the two properties were not directly related. Factors additional to cellular catalase activity must therefore affect susceptibility to peroxide following cold shock. Mutational loss of catalase, exonuclease III or recA-dependent DNA repair functions all increased the sensitivity of cold-shocked Escherichia coli to the inhibitory effects of peroxide present in rich medium. The peroxide resistant fraction of a cold-shocked population of Salm. typhimurium (i.e. those cells able to grow on TSYA) was more resistant to gamma radiation than the population as a whole. Cold shock thus sensitizes cells to more than one form of oxidative stress. Prior exposure of growing cells to 30 mumol/l hydrogen peroxide abolished their sensitivity to rich medium following cold shock implying that Salm. typhimurium contains an inducible system protecting against oxidative stress.  相似文献   
119.
120.
A method is described for preparing cake crumb for sectioning and staining. Previous to embedding, the fat was stained and fixed by exposing small blocks of cake to the fumes from a 5%, freshly-prepared, aqueous solution of osmic acid (OsO4). This was followed by dehydration in ethyl alcohol and tertiary butyl alcohol, removal of air under vacuum and infiltration with paraffin.

Sections were cut 20 and 9Op thick and mounted with water.

Wax was removed by immersion in xylene. The sections were rehydrated in a series of ethyl alcohol dilutions, from concentrated to dilute, then transferred to distilled water.

Protein was then stained pink by immersion of the slides in an acidified 0.04% water solution of eosin Y, or starch was stained blue with a dilute aqueous solution of iodine. Ten grams iodine and 10 g. KI were dissolved in 25 ml. distilled water. This stock solution was diluted for use one to two hundred times.

The relationship between protein and starch was demonstrated by staining the sections with eosin, differentiating in 50% alcohol and staining with iodine.

When slides of cake crumb were prepared in this way, the fat was stained black, the protein bright pink and the starch granules a dark blue.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号