首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   474篇
  免费   60篇
  2021年   5篇
  2020年   4篇
  2019年   4篇
  2018年   7篇
  2017年   6篇
  2016年   13篇
  2015年   14篇
  2014年   21篇
  2013年   26篇
  2012年   16篇
  2011年   23篇
  2010年   15篇
  2009年   15篇
  2008年   24篇
  2007年   23篇
  2006年   16篇
  2005年   25篇
  2004年   21篇
  2003年   26篇
  2002年   14篇
  2001年   13篇
  2000年   18篇
  1999年   17篇
  1998年   9篇
  1997年   8篇
  1996年   7篇
  1995年   7篇
  1994年   10篇
  1993年   3篇
  1992年   6篇
  1991年   7篇
  1990年   8篇
  1989年   6篇
  1988年   4篇
  1987年   3篇
  1986年   4篇
  1984年   8篇
  1982年   5篇
  1981年   5篇
  1980年   3篇
  1979年   7篇
  1978年   3篇
  1977年   5篇
  1973年   4篇
  1972年   6篇
  1971年   4篇
  1968年   3篇
  1951年   2篇
  1912年   2篇
  1909年   3篇
排序方式: 共有534条查询结果,搜索用时 109 毫秒
211.
Altered control of the rat cell cycle induced by adenovirus requires expression of transformation region E1A, but not of E1B, E2A, E2B, or late genes. We show here that neither E3 nor E4 is required, so the effect results directly from an E1A product. Mutants with defects in the 289-amino-acid (aa) E1A product had little or no effect on the rat cell cycle even at 1,000 IU per cell. A mutant (pm975) lacking the 243-aa E1A product altered cell cycle progression, but less efficiently than did wild-type virus. The 289-aa E1A protein is therefore essential for cell cycle effects; the 243-aa protein is also necessary for the full effect but cannot act alone. Mutants with altered 289-aa E1A proteins showed different extents of leak expression of viral early region E2A as the multiplicity was increased; each leaked more in human than in rat cells. dl312, with no E1A products, failed to produce E2A mRNA or protein at 1,000 IU per cell in rat cells but did so in some experiments in human cells. There appears to be a very strict dependence of viral early gene expression on E1A in rat cells, whereas dependence on E1A is more relaxed in HeLa cells, perhaps due to a cellular E1A-like function. Altered cell cycle control is more dependent on E1A function than is early viral gene expression.  相似文献   
212.
Restriction endonucleases are deoxyribonucleases which cleave double-stranded DNA into fragments. With only one exception, all restriction endonucleases recognize short, non-methylated DNA sequences. Restriction endonucleases can be divided into two groups based on the position of the cleavage site relative to the recognition sequence. Class I restriction endonucleases cleave double-stranded DNA at positions outside the recognition sequence and generate fragments of random size. The cleavage sites of Class II restriction endonucleases are located, in most cases, within the recognition sequence. Most of the Class II restriction endonucleases recognize 4, 5, or 6 base pair palindromes and generate fragments with either flush ends or staggered ends. DNA fragments with staggered ends contain 3, 4, or 5 nucleotide single-stranded tails called ‘sticky ends’. DNA fragments produced by Class II restriction endonuclease cleavage can be separated on gels according to their molecular weight. The fragments can be isolated from the gel and used for sequence analysis to elucidate genetic information stored in DNA. Further, an isolated fragment can be inserted into a small extrachromosomal DNA, e.g. plasmid, phage or viral DNA, and its replication and expression can be studied in clones of prokaryotic or eukaryotic cells. Restriction endonucleases and cloning technology are powerful modern tools for attacking genetic problems in medicine, agriculture and industrial microbiology.  相似文献   
213.
A. P. Mackey 《Hydrobiologia》1979,67(3):241-247
Experiments are described to characterise the heterotrophic potential of Westiellopsis prolifica Janet, which fixes nitrogen under light and dark conditions. The growth of the organism in terms of dry weight increase, was more in fructose, lactose, sucrose, sorbose, galactose, glucose, sodium acetate, mannitol, sorbitol, glycerol, ethyl alcohol and butyl alcohol, when the alga was pretreated with light and subsequently incubated with the substrates in light. Mannose, xylose, acetic acid, propionic acid, fructose 1,6 di Po4, pyruvic acid, dihydroxyacetone and succinic acid decreased the growth of the organism in the same condition. In dark incubation after pretreatment with light, as well as in the dark, Westiellopsis showed a better growth response to almost all the exogenous substrates. However, after pretreatment either with light or dark, the test organism utilised exogenous substrates quicker in light than in dark incubations. These experiments would suggest that the substrate specificity and efficiency of substrate utilisation by the alga during its heterotrophic growth are governed by the growth conditions.  相似文献   
214.
215.

Background

Experimental studies support an important role for endothelial nitric oxide synthase (eNOS) in the regulation of angiogenesis. In humans, a common polymorphism exists in the eNOS gene that results in the conversion of glutamate to aspartate for codon 298. In vitro and in vivo studies have suggested a decreased NOS activity in patients with the Asp298 variant. We hypothesized that a genetic-mediated decreased eNOS activity may limit collateral development in patients with chronic coronary occlusions.

Methods

We selected 291 consecutive patients who underwent coronary angiography and who had at least one chronic (>15 days) total coronary occlusion. Collateral development was graded angiographically using two different methods: the collateral flow grade and the recipient filling grade. Genomic DNA was extracted from white blood cells and genotyping was performed using previously published techniques.

Results

Collateral development was lower in patients carrying the Asp298 variant than in Glu-Glu homozygotes (collateral flow grade: 2.64 ± 0.08 and 2.89 ± 0.08, respectively, p = 0.04; recipient filling grade: 3.00 ± 0.08 and 3.24 ± 0.07, respectively, p = 0.04). By multivariable analysis, three variables were independently associated with the collateral flow grade: female gender, smoking, and the Asp298 variant (p = 0.03) while the Asp298 variant was the sole variable independently associated with the recipient filling grade (p = 0.03).

Conclusion

Collateral development is lower in patients with the Asp298 variant. This may be explained by the decreased NOS activity in patients with the Asp298 variant. Further studies will have to determine whether increasing eNOS activity in humans is associated with coronary collateral development.  相似文献   
216.
217.
The acute phase response is an evolutionarily conserved response of the liver to inflammatory stimuli, which aids the body in host defense and homeostasis. We have previously reported that CCAAT enhancer-binding protein alpha (C/EBPalpha) is required for the induction of acute phase protein (APP) genes in newborn mice in response to lipopolysaccharide. In this paper, we describe a mechanism by which C/EBPalpha knock-out mice are unable to induce APP gene expression in response to inflammatory stimuli. We demonstrate that the lack of acute phase response in C/EBPalpha knock-out mice is because of a hepatocyte autonomous defect. C/EBPalpha knock-out hepatocytes do not activate STAT3 in response to recombinant interleukin (IL)-6, indicating a defect in the IL-6 pathway. C/EBPalpha knock-out hepatocytes also do not show activation of other IL-6 receptor (IL-6R)-mediated Janus kinase substrates, gp130, SHP-2, and Tyk2. Further examination of the IL-6 pathway demonstrated that C/EBPalpha knock-out hepatocytes have decreased IL-6Ralpha protein levels caused, in part, by reduced protein stability. However, other components of the IL-6 pathway are intact, as demonstrated by rescue of STAT3 activation and APP gene induction with recombinant-soluble IL-6R linked to IL-6 cytokine (Hyper-IL-6) or with another gp130 signaling cytokine, Oncostatin M. In conclusion, C/EBPalpha is required for the proper regulation of IL-6Ralpha protein in hepatocytes resulting in a lack of acute phase protein gene induction in newborn C/EBPalpha null mice in response to lipopolysaccharide or cytokines.  相似文献   
218.
Little is known about homocysteine metabolism in intestine. To address this question, we investigated homocysteine metabolism under conditions of folate adequacy and folate deprivation in the Caco-2 cell line, a model of human intestinal mucosal cells. Caco-2 cells were cultured in media enriched with [3-(13)C]serine and [U-(13)C(5)]methionine tracers, and enrichments of intracellular free amino acid pools of these amino acids as well as homocysteine, cystathionine, and cysteine were measured by using gas chromatography/mass spectrometry. Homocysteine transsulfuration plus folate-dependent and total remethylation were quantified from these amino acid enrichments. Homocysteine remethylation accounted for 19% of the intracellular free methionine pool in cells cultured with supplemental folate, and nearly all one-carbon units used for remethylation originated from the three carbon of serine via folate-dependent remethylation. Labeling of cystathionine and cysteine indicated the presence of a complete transsulfuration pathway in Caco-2 cells, and this pathway produced 13% of the intracellular free cysteine pool. Appearance of labeled homocysteine and cystathionine in culture medium suggests export of these metabolites from intestinal cells. Remethylation was reduced by one-third in folate-restricted cell cultures (P < 0.001), and only approximately 50% of the one-carbon units used for remethylation originated from the three carbon of serine under these conditions. In conclusion, the three carbon of serine is the primary source of one-carbon units used for homocysteine remethylation in folate-supplemented Caco-2 cell cultures. Remethylation is reduced as a result of folate restriction in this mucosal cell model, and one-carbon sources other than the three carbon of serine contribute to remethylation under this condition.  相似文献   
219.
Cyclical neutropenia is a dynamical disease of the hematopoietic system marked by an oscillation in circulating leukocyte (e.g. neutrophil) numbers to near zero levels and then back to normal. This oscillation is also mirrored in the platelets and reticulocytes which oscillate with the same period. Cyclical neutropenia has an animal counterpart in the grey collie. Using the mathematical model of the hematopoietic system of Colijn and Mackey [A mathematical model of hematopoiesis: I. Periodic chronic myelogenous leukemia. Companion paper to the present paper.] we have determined what parameters are necessary to mimic laboratory and clinical data on untreated grey collies and humans, and also what changes in these parameters are necessary to fit data during treatment with granulocyte colony stimulating factor (G-CSF). Compared to the normal steady-state values, we found that the major parameter changes that mimic untreated cyclical neutropenia correspond to a decreased amplification (increased apoptosis) within the proliferating neutrophil precursor compartment, and a decrease in the maximal rate of re-entry into the proliferative phase of the stem cell compartment. For the data obtained during G-CSF treatment, good fits were obtained only when parameters were altered that would imply that G-CSF led to higher amplification (lower rate of apoptosis) in the proliferating neutrophil precursors, and a elevated rate of differentiation into the neutrophil line.  相似文献   
220.
Ferredoxins, the major distributors for electrons to various acceptor systems in plastids, contribute to redox regulation and antioxidant defence in plants. However, their function in plant immunity is not fully understood. In this study, we show that the expression of the major leaf ferredoxin gene Fd2 is suppressed by Pseudomonas syringae pv. tomato (Pst) DC3000 infection, and that knockout of Fd2 (Fd2‐KO) in Arabidopsis increases the plant's susceptibility to both Pst DC3000 and Golovinomyces cichoracearum. On Pst DC3000 infection, the Fd2‐KO mutant accumulates increased levels of jasmonic acid and displays compromised salicylic acid‐related immune responses. Fd2‐KO also shows defects in the accumulation of reactive oxygen species induced by pathogen‐associated molecular pattern‐triggered immunity. However, Fd2‐KO shows enhanced R‐protein‐mediated resistance to Pst DC3000/AvrRpt2 infection, suggesting that Fd2 plays a negative role in effector‐triggered immunity. Furthermore, Fd2 interacts with FIBRILLIN4 (FIB4), a harpin‐binding protein localized in chloroplasts. Interestingly, Fd2, but not FIB4, localizes to stromules that extend from chloroplasts. Taken together, our results demonstrate that Fd2 plays an important role in plant immunity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号