首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   892篇
  免费   70篇
  962篇
  2022年   5篇
  2021年   10篇
  2020年   13篇
  2019年   11篇
  2018年   17篇
  2017年   14篇
  2016年   20篇
  2015年   36篇
  2014年   28篇
  2013年   40篇
  2012年   45篇
  2011年   39篇
  2010年   29篇
  2009年   25篇
  2008年   41篇
  2007年   45篇
  2006年   47篇
  2005年   40篇
  2004年   32篇
  2003年   24篇
  2002年   27篇
  2001年   31篇
  2000年   30篇
  1999年   18篇
  1998年   21篇
  1997年   7篇
  1996年   5篇
  1995年   4篇
  1994年   9篇
  1993年   6篇
  1992年   13篇
  1991年   22篇
  1990年   14篇
  1989年   14篇
  1988年   23篇
  1987年   17篇
  1986年   11篇
  1985年   8篇
  1984年   11篇
  1983年   5篇
  1982年   6篇
  1981年   8篇
  1979年   9篇
  1978年   9篇
  1976年   8篇
  1975年   5篇
  1974年   4篇
  1972年   7篇
  1967年   4篇
  1939年   3篇
排序方式: 共有962条查询结果,搜索用时 15 毫秒
91.
To examine a role for focal adhesion kinase (FAK) in cardiac morphogenesis, we generated a line of mice with a conditional deletion of FAK in nkx2-5-expressing cells (herein termed FAKnk mice). FAKnk mice died shortly after birth, likely resulting from a profound subaortic ventricular septal defect and associated malalignment of the outflow tract. Additional less penetrant phenotypes included persistent truncus arteriosus and thickened valve leaflets. Thus, conditional inactivation of FAK in nkx2-5-expressing cells leads to the most common congenital heart defect that is also a subset of abnormalities associated with tetralogy of Fallot and the DiGeorge syndrome. No significant differences in proliferation or apoptosis between control and FAKnk hearts were observed. However, decreased myocardialization was observed for the conal ridges of the proximal outflow tract in FAKnk hearts. Interestingly, chemotaxis was significantly attenuated in isolated FAK-null cardiomyocytes in comparison to genetic controls, and these effects were concomitant with reduced tyrosine phosphorylation of Crk-associated substrate (CAS). Thus, it is possible that ventricular septation and appropriate outflow tract alignment is dependent, at least in part, upon FAK-dependent CAS activation and subsequent induction of polarized myocyte movement into the conal ridges. Future studies will be necessary to determine the precise contributions of the additional nkx2-5-derived lineages to the phenotypes observed.  相似文献   
92.
93.
The human type 1 (placenta, breast tumors) and type 2 (gonads, adrenals) isoforms of 3beta-hydroxysteroid dehydrogenase/isomerase (3beta-HSD) are key enzymes in steroidogenic pathways leading to the production of all active steroid hormones. Kinetic analyses of purified 3beta-HSD1 show that the Michaelis-Menten constants (Km) for substrates and cofactor are decreased dramatically (three- to eight-fold) by the addition of beta-mercaptoethanol (BME), which suggest that a disulfide bond may be critical to ligand utilization. Western immunoblots and SDS-PAGE of purified 3beta-HSD1 in the presence or absence of BME showed a lack of intersubunit disulfide bonds in the dimeric enzyme. The Rossmann-fold domain of 3beta-HSD1 contains two Cys residues, Cys72 and Cys111, which are capable of forming an intrasubunit disulfide bond based on their proximity in our structural model. Our structural model also predicts that Cys83 may affect the orientation of substrate and cofactor. To test these predictions, the C72S, C72F, C111S, C111A, C83S and C83A mutants of 3beta-HSD1 were produced, expressed, and purified. BME failed to diminish the Km values of substrate and cofactor for C72S, C72F, C111S and C111A but produced a 2.5 decrease in Km values for C83A ligands similar to wild-type 3beta-HSD. Thus, our results support the presence of an intrasubunit disulfide bond between Cys72 and Cys111 that participates in the tertiary structure of the Rossmann-fold domain. Although C83S had no enzyme activity, the C83A mutant enzyme exhibited two- to five-fold higher Km values for substrate and cofactor but had similar K(cat) values compared to wild-type 3beta-HSD. These data characterize the roles of Cys residues in 3beta-HSD and validate the predictions of our structural model.  相似文献   
94.
95.
Vascular endothelial growth factor (VEGF)-C plays an important role in lymphangiogenesis; however, functional responses of lymphatic vessels to VEGF-C have not been characterized. We tested the hypothesis that VEGF-C-induced activation of VEGF receptor (VEGFR)-3 increases lymphatic pump output. We examined the in vivo pump activity of rat mesenteric collecting lymphatics using intravital microscopy during basal conditions and during treatment with 1 nM recombinant VEGF-C, the selective VEGFR-3 agonist VEGF-Cys(156)Ser mutation (C156S; 1 nM), or 0.1 nM VEGF-A. Their specific responses were also analyzed during selective inhibition of VEGFR-3 with MAZ-51. Contraction frequency, end-diastolic diameter, end-systolic diameter, stroke volume index, pump flow index, and ejection fraction were evaluated. We also assessed arteriolar diameter and microvascular extravasation of FITC-albumin. The results show that both VEGF-C and VEGF-C156S significantly increased contraction frequency, end-diastolic diameter, stroke volume index, and pump flow index in a time-dependent manner. VEGF-A caused a different response characterized by a significantly increased stroke volume after 30 min of treatment. MAZ-51 (5 muM) caused tonic constriction and decreased contraction frequency. In addition, 0.5 and 5 muM MAZ-51 attenuated VEGF-C- and VEGF-C156S-induced lymphatic pump activation. VEGF-A caused vasodilation of arterioles, whereas VEGF-C and VEGF-C156S did not significantly alter arteriolar diameter. Also, VEGF-A and VEGF-C caused increased microvascular permeability, whereas VEGF-C156S did not. Our results demonstrate that VEGF-C increases lymphatic pumping through VEGFR-3. Furthermore, changes in microvascular hemodynamics are not required for VEGFR-3-mediated changes in lymphatic pump activity.  相似文献   
96.
Background and Aims Floral spurs are hollow, tubular outgrowths that typically conceal nectar. By their involvement in specialized pollinator interactions, spurs have ecological and evolutionary significance, often leading to speciation. Despite their importance and diversity in shape and size among angiosperm taxa, detailed investigations of the mechanism of spur development have been conducted only recently.Methods Initiation and growth of the nectar-yielding petal spur of Centranthus ruber ‘Snowcloud’ was investigated throughout seven stages, based on bud size and developmental events. The determination of the frequency of cell division, quantified for the first time in spurs, was conducted by confocal microscopy following 4'',6-diamidino-2-phenylindole (DAPI) staining of mitotic figures. Moreover, using scanning electron microscospy of the outer petal spur surface unobstructed by trichomes, morphometry of epidermal cells was determined throughout development in order to understand the ontogeny of this elongate, hollow tube.Key Results Spur growth from the corolla base initially included diffuse cell divisions identified among epidermal cells as the spur progressed through its early stages. However, cell divisions clearly diminished before a petal spur attained 30 % of its final length of 4·5 mm. Thereafter until anthesis, elongation of individual cells was primarily responsible for the spur’s own extension. Consequently, a prolonged period of anisotropy, wherein epidermal cells elongated almost uniformly in all regions along the petal spur’s longitudinal axis, contributed principally to the spur’s mature length.Conclusions This research demonstrates that anisotropic growth of epidermal cells – in the same orientation as spur elongation – chiefly explains petal spur extension in C. ruber. Representing the inaugural investigation of the cellular basis for spur ontogeny within the Euasterids II clade, this study complements the patterns in Aquilegia species (order Ranunculales, Eudicots) and Linaria vulgaris (order Lamiales, Euasterids I), thereby suggesting the existence of a common underlying mechanism for petal spur ontogeny in disparate dicot lineages.  相似文献   
97.
98.
99.
Previously we showed that cytokine-induced neutrophil chemoattractant (CINC), but not macrophage inflammatory protein-2 (MIP-2), is detected in plasma after intratracheal challenge with LPS or the particular chemokines. To further understand the differences between CINC and MIP-2 flux from the lung, we attempted to detect the two chemokines in isolated erythrocytes and leukocytes in rats after intratracheal LPS challenge. In response to intratracheal LPS, we found both CINC and MIP-2 in isolated erythrocytes and leukocytes, suggesting that MIP-2 produced in the LPS-challenged lung entered the circulation like CINC. To assess the relative flux of CINC and MIP-2 from the intra-alveolar compartment into the blood, experiments were performed in rats implanted with vascular catheters in which both chemokines were either injected intratracheally (5 μg) or infused intravenously (20 ng/min) and subsequently measured in plasma or with the cellular elements. Both chemokines appeared in the blood following intratracheal injection, with CINC detected in plasma and cells but MIP-2 only detected in the cellular fraction of blood. Infusion of both chemokines allowed detection of MIP-2 and CINC in plasma and with the cellular elements, which allowed us to calculate clearance for each chemokine and to assess CINC and MIP-2 rates of appearance (Ra) following intratracheal injection. On the basis of plasma and whole blood clearance, CINC Ra was more than sevenfold and fourfold higher, respectively, than MIP-2 Ra. This analysis indicates that differences exist in the rate of flux of CINC and MIP-2 across the epithelial/endothelial barrier of the lung, despite similar molecular size.  相似文献   
100.
Mass transport of drug delivery vehicles is guided by particle properties, such as size, shape, composition, and surface chemistry, as well as biomolecules and serum proteins that adsorb to the particle surface. In an attempt to identify serum proteins influencing cellular associations and biodistribution of intravascularly injected particles, we used two-dimensional gel electrophoresis and mass spectrometry to identify proteins eluted from the surface of cationic and anionic silicon microparticles. Cationic microparticles displayed a 25-fold greater abundance of Ig light variable chain, fibrinogen, and complement component 1 compared to their anionic counterparts. Anionic microparticles were found to accumulate in equal abundance in murine liver and spleen, whereas cationic microparticles showed preferential accumulation in the spleen. Immunohistochemistry supported macrophage uptake of both anionic and cationic microparticles in the liver, as well as evidence of association of cationic microparticles with hepatic endothelial cells. Furthermore, scanning electron micrographs supported cellular competition for cationic microparticles by endothelial cells and macrophages. Despite high macrophage content in the lungs and tumor, microparticle uptake by these cells was minimal, supporting differences in the repertoire of surface receptors expressed by tissue-specific macrophages. In summary, particle surface chemistry drives selective binding of serum components impacting cellular interactions and biodistribution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号