首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1664篇
  免费   105篇
  2022年   10篇
  2021年   17篇
  2020年   9篇
  2019年   17篇
  2018年   22篇
  2017年   22篇
  2016年   26篇
  2015年   58篇
  2014年   61篇
  2013年   87篇
  2012年   98篇
  2011年   87篇
  2010年   78篇
  2009年   71篇
  2008年   115篇
  2007年   102篇
  2006年   89篇
  2005年   86篇
  2004年   95篇
  2003年   92篇
  2002年   93篇
  2001年   33篇
  2000年   36篇
  1999年   26篇
  1998年   18篇
  1997年   20篇
  1996年   12篇
  1995年   18篇
  1994年   19篇
  1993年   17篇
  1992年   22篇
  1991年   17篇
  1990年   28篇
  1989年   18篇
  1988年   15篇
  1987年   7篇
  1986年   14篇
  1985年   11篇
  1984年   13篇
  1983年   5篇
  1982年   12篇
  1981年   6篇
  1980年   12篇
  1979年   4篇
  1978年   4篇
  1975年   7篇
  1974年   8篇
  1972年   4篇
  1971年   3篇
  1966年   6篇
排序方式: 共有1769条查询结果,搜索用时 31 毫秒
91.
92.
ASC is an activating adaptor for NF-kappa B and caspase-8-dependent apoptosis   总被引:13,自引:0,他引:13  
ASC is a pro-apoptotic protein containing a pyrin domain (PD) and a caspase-recruitment domain (CARD). A previous study suggests that ASC interacts with Ipaf, a member of the Apaf-1/Nod1 protein family. However, the functional relevance of the interaction has not been determined. Here, we report that co-expression of ASC with Ipaf or oligomerization of ASC induces both apoptosis and NF-kappa B activation. Apoptosis induced through ASC was inhibited by a mutant form of Caspase-8 but not by that of Caspase-1. The PD of ASC physically interacted with Caspase-8 as well as with pyrin, the familial Mediterranean fever gene product. Caspase-8 deficiency rescued mouse fibroblasts from apoptosis induced by ASC oligomerization. Pyrin disrupted the interaction between ASC and Caspase-8, and inhibited both apoptosis and NF-kappa B activation induced by ASC. These findings suggest that ASC is a mediator of NF-kappa B activation and Caspase-8-dependent apoptosis in an Ipaf signaling pathway.  相似文献   
93.
The X-ray crystal structure of a catalytic site mutant of beta-amylase, E172A (Glu172 --> Ala), from Bacillus cereus var. mycoides complexed with a substrate, maltopentaose (G5), and the wild-type enzyme complexed with maltose were determined at 2.1 and 2.0 A resolution, respectively. Clear and continuous density corresponding to G5 was observed in the active site of E172A, and thus, the substrate, G5, was not hydrolyzed. All glucose residues adopted a relaxed (4)C(1) conformation, and the conformation of the maltose unit for Glc2 and Glc3 was much different from those of other maltose units, where each glucose residue of G5 is named Glc1-Glc5 (Glc1 is at the nonreducing end). A water molecule was observed 3.3 A from the C1 atom of Glc2, and 3.0 A apart from the OE1 atom of Glu367 which acts as a general base. In the wild-type enzyme-maltose complex, two maltose molecules bind at subsites -2 and -1 and at subsites +1 and +2 in tandem. The conformation of the maltose molecules was similar to that of the condensation product of soybean beta-amylase, but differed from that of G5 in E172A. When the substrate flips between Glc2 and Glc3, the conformational energy of the maltose unit was calculated to be 20 kcal/mol higher than that of the cis conformation by MM3. We suggest that beta-amylase destabilizes the bond that is to be broken in the ES complex, decreasing the activation energy, DeltaG(++), which is the difference in free energy between this state and the transition state.  相似文献   
94.
The crystal structures of beta-amylase from Bacillus cereus var. mycoides in complexes with five inhibitors were solved. The inhibitors used were three substrate analogs, i.e. glucose, maltose (product), and a synthesized compound, O-alpha-D-glucopyranosyl-(1-->4)-O-alpha-D-glucopyranosyl-(1-->4)-D-xylopyranose (GGX), and two affinity-labeling reagents with an epoxy alkyl group at the reducing end of glucose. For all inhibitors, one molecule was bound at the active site cleft and the non-reducing end glucose of the four inhibitors except GGX was located at subsite 1, accompanied by a large conformational change of the flexible loop (residues 93-97), which covered the bound inhibitor. In addition, another molecule of maltose or GGX was bound about 30 A away from the active site. A large movement of residues 330 and 331 around subsite 3 was also observed upon the binding of GGX at subsites 3 to 5. Two affinity-labeling reagents, alpha-EPG and alpha-EBG, were covalently bound to a catalytic residue (Glu-172). A substrate recognition mechanism for the beta-amylase was discussed based on the modes of binding of these inhibitors in the active site cleft.  相似文献   
95.
96.
97.
We screened a gene trap library of Arabidopsis thaliana and isolated a line in which a gene encoding a homologue of monofunctional aspartate kinase was trapped by the reporter gene. Aspartate kinase (AK) is a key enzyme in the biosynthsis of aspartate family amino acids such as lysine, threonine, isoleucine, and methionine. In plants, two types of AK are known: one is AK which is sensitive to feedback inhibition by threonine and carries both AK and homoserine dehydrogenase (HSD) activities. The other one is monofunctional, sensitive to lysine and synergistically S-adenosylmethionine, and has only AK activity. We concluded that the trapped gene encoded a monofunctional aspartate kinase and designated as AK-lys3, because it lacked the HSD domain and had an amino acid sequence highly similar to those of the monofunctional aspartate kinases ofA. thaliana. AK-lys3 was highly expressed in xylem of leaves and hypocotyls and stele of roots. Significant expression of this gene was also observed in trichomes after bolting. Slight expression of AK-lys3 was detected in vascular bundles and mesophyll cells of cauline leaves, inflorescence stems, sepals, petals, and stigmas. These results indicated that this aspartate kinase gene was not expressed uniformly but in a spatially specific manner.  相似文献   
98.
99.
100.
We reported that epidermal growth factor (EGF) stimulated graft adaptation in a rat model of syngeneic small bowel transplantation. However, graft rejection is a severe problem with clinical small bowel transplantation, because small intestinal wall contains large amounts of lymphoid tissue. Studies were performed to investigate the effect of EGF on allogeneic graft adaptation after small bowel transplantation in rats treated with an immunosuppressant FK506. The transplanted animals received intraperitoneally EGF or saline (untreated) after surgery and were examined for analysis one week later. EGF-treated group markedly enhanced the water absorption and induction of sodium glucose cotransporter (SGLTI) as compared with EGF-untreated group. EGF-treated group also increased the mucosal crypt depth and its cell proliferating rate, although there was no significant difference in the mucosal villus height between the two groups. These results indicate that EGF accelerates intestinal allograft adaptation in part by the recovery of mucosal structure and function after small bowel transplantation in rats. EGF may have relevance to promote graft function in clinical small intestinal transplantation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号