首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59755篇
  免费   5693篇
  国内免费   22篇
  65470篇
  2023年   244篇
  2022年   507篇
  2021年   1007篇
  2020年   637篇
  2019年   808篇
  2018年   995篇
  2017年   867篇
  2016年   1479篇
  2015年   2449篇
  2014年   2712篇
  2013年   3167篇
  2012年   4226篇
  2011年   4082篇
  2010年   2586篇
  2009年   2362篇
  2008年   3400篇
  2007年   3442篇
  2006年   3273篇
  2005年   3108篇
  2004年   3034篇
  2003年   2779篇
  2002年   2710篇
  2001年   881篇
  2000年   719篇
  1999年   819篇
  1998年   855篇
  1997年   594篇
  1996年   517篇
  1995年   473篇
  1994年   502篇
  1993年   496篇
  1992年   628篇
  1991年   501篇
  1990年   492篇
  1989年   494篇
  1988年   445篇
  1987年   410篇
  1986年   404篇
  1985年   379篇
  1984年   436篇
  1983年   401篇
  1982年   425篇
  1981年   388篇
  1980年   397篇
  1979年   312篇
  1978年   299篇
  1977年   267篇
  1976年   258篇
  1974年   233篇
  1973年   208篇
排序方式: 共有10000条查询结果,搜索用时 14 毫秒
991.
Tendon stiffness is calculated by dividing changes in tendon force by tendon elongation. For this purpose, participants are commonly asked to perform a maximal muscle contraction (“active” method). Alternatively tendon elongation can be achieved by means of a passive joint rotation (“passive” method). The purpose of this study was to compare Achilles tendon stiffness obtained from both methods across different tendon strain rates. Twenty adults performed a series of ramped maximum isometric plantarflexions of different durations. Passive ankle rotations of different angular velocities were also performed. Achilles tendon stiffness was obtained from a combination of motion analysis, isokinetic dynamometry and ultrasonography and compared across methods at three strain rates. At all strain rates, tendon stiffness obtained from the active method was 6% greater compared to the passive method. In spite of this systematic bias, there was good agreement between the methods. Intraclass correlation coefficients were greater than 0.98, and more than 95% of data points fell into the 95% confidence intervals. This agreement will be acceptable in many research contexts. We also found a linear increase in tendon stiffness with increasing strain rate, which must be taken into consideration when interpreting or reporting tendon stiffness.  相似文献   
992.
We review morphological characters considered important for understanding butterfly phylogeny and evolution in the light of recent large-scale molecular phylogenies of the group. A number of the most important morphological works from the past half century are reviewed and morphological character evolution is reassessed based on the most recent phylogenetic results. In particular, higher level butterfly morphology is evaluated based on a very recent study combining an elaborate morphological dataset with a similar molecular one. Special attention is also given to the families Papilionidae, Nymphalidae and Hesperiidae which have all seen morphological and molecular efforts come together in large, combined works in recent years. In all of the examined cases the synergistic effect of combining elaborate morphological datasets with ditto molecular clearly outweigh the merits of either data type analysed on its own (even for ‘genome size’ molecular datasets). It is evident that morphology, far from being obsolete or arcane, still has an immensely important role to play in butterfly (and insect) phylogenetics. Not least because understanding morphology is essential for understanding and evaluating the evolutionary scenarios phylogenetic trees are supposed to illustrate.  相似文献   
993.
994.
Social parasites exploit the colony resources of social insects. Some of them exploit the host colony as a food resource or as a shelter whereas other species also exploit the brood care behavior of their social host. Some of these species have even lost the worker caste and rely completely on the host''s worker force to rear their offspring. To avoid host defenses and bypass their recognition code, these social parasites have developed several sophisticated chemical infiltration strategies. These infiltration strategies have been highly studied in several hymenopterans. Once a social parasite has successfully entered a host nest and integrated its social system, its emerging offspring still face the same challenge of avoiding host recognition. However, the strategy used by the offspring to survive within the host nest without being killed is still poorly documented. In cuckoo bumblebees, the parasite males completely lack the morphological and chemical adaptations to social parasitism that the females possess. Moreover, young parasite males exhibit an early production of species-specific cephalic secretions, used as sexual pheromones. Host workers might thus be able to recognize them. Here we used a bumblebee host-social parasite system to test the hypothesis that social parasite male offspring exhibit a chemical defense strategy to escape from host aggression during their intranidal life. Using behavioral assays, we showed that extracts from the heads of young cuckoo bumblebee males contain a repellent odor that prevents parasite males from being attacked by host workers. We also show that social parasitism reduces host worker aggressiveness and helps parasite offspring acceptance.  相似文献   
995.
Naive T lymphocytes exhibit extensive antigen-independent recirculation between blood and lymph nodes, where they may encounter dendritic cells carrying cognate antigen. We examine how long different T cells may spend in an individual lymph node by examining data from long term cannulation of blood and efferent lymphatics of a single lymph node in the sheep. We determine empirically the distribution of transit times of migrating T cells by applying the Least Absolute Shrinkage & Selection Operator () or regularised to fit experimental data describing the proportion of labelled infused cells in blood and efferent lymphatics over time. The optimal inferred solution reveals a distribution with high variance and strong skew. The mode transit time is typically between 10 and 20 hours, but a significant number of cells spend more than 70 hours before exiting. We complement the empirical machine learning based approach by modelling lymphocyte passage through the lymph node . On the basis of previous two photon analysis of lymphocyte movement, we optimised distributions which describe the transit times (first passage times) of discrete one dimensional and continuous (Brownian) three dimensional random walks with drift. The optimal fit is obtained when drift is small, i.e. the ratio of probabilities of migrating forward and backward within the node is close to one. These distributions are qualitatively similar to the inferred empirical distribution, with high variance and strong skew. In contrast, an optimised normal distribution of transit times (symmetrical around mean) fitted the data poorly. The results demonstrate that the rapid recirculation of lymphocytes observed at a macro level is compatible with predominantly randomised movement within lymph nodes, and significant probabilities of long transit times. We discuss how this pattern of migration may contribute to facilitating interactions between low frequency T cells and antigen presenting cells carrying cognate antigen.  相似文献   
996.
Many membrane proteins exist and function as oligomers or protein complexes. Routine analytical methods involve extraction and solubilization of the proteins with detergents, which could disturb their actual oligomeric state. AcrB is a trimeric inner membrane multidrug transporter in E. coli. In previous studies, we created a mutant AcrBP223G, which behaves like a monomer when extracted from the cell membrane. However, the actual oligomeric state of AcrBP223G in cell membranes remained unclear, which complicated the interpretation of the mechanism by which the mutation affects function. Here we used several complementary methods to determine the oligomeric state of AcrBP223G in E. coli cell membranes. Two sets of quantitative fluorescent techniques were exploited. For these, we created fluorescent tagged AcrB, AcrB-CFP and AcrB-YPet. Fluorescence resonance energy transfer (FRET) and fluorescence recovery after photobleaching (FRAP) were employed to characterize independently the efficiency of energy transfer between co-expressed AcrB-CFP and AcrB-YPet, and the diffusion coefficient of AcrB-YPet and AcrBP223G-YPet in live E. coli cells. Second, we introduced Cys pairs at the inter-subunit interface and used controlled oxidation to probe inter-subunit distances. The results from all studies converge on the conclusion that AcrBP223G exists as a trimer in cell membranes, which dissociates during the purification steps. The small change in trimer affinity and structure leads to a significant loss of AcrB activity. In addition, throughout this study we developed protocols and established benchmark values, useful for further studies on membrane protein associations in cell membranes.  相似文献   
997.
998.
999.
In recent years, progress in the study of the lateral organization of the plasma membrane has led to the proposal that mammalian cells use two different organelles to store lipids: intracellular lipid droplets (LDs) and plasma membrane caveolae. Experimental evidence suggests that caveolin (CAV) may act as a sensitive lipid-organizing molecule that physically connects these two lipid-storing organelles. Here, we determine the sequences necessary for efficient sorting of CAV to LDs. We show that targeting is a process cooperatively mediated by two motifs. CAV's central hydrophobic domain (Hyd) anchors CAV to the endoplasmic reticulum (ER). Next, positively charged sequences (Pos-Seqs) mediate sorting of CAVs into LDs. Our findings were confirmed by identifying an equivalent, non-conserved but functionally interchangeable Pos-Seq in ALDI, a bona fide LD-resident protein. Using this information, we were able to retarget a cytosolic protein and convert it to an LD-resident protein. Further studies suggest three requirements for targeting via this mechanism: the positive charge of the Pos-Seq, physical proximity between Pos-Seq and Hyd and a precise spatial orientation between both motifs. The study uncovers remarkable similarities with the signals that target proteins to the membrane of mitochondria and peroxisomes  相似文献   
1000.

Introduction

Normal and malignant breast tissue contains a rare population of multi-potent cells with the capacity to self-renew, referred to as stem cells, or tumor initiating cells (TIC). These cells can be enriched by growth as “mammospheres” in three-dimensional cultures.

Objective

We tested the hypothesis that human bone-marrow derived mesenchymal stem cells (MSC), which are known to support tumor growth and metastasis, increase mammosphere formation.

Results

We found that MSC increased human mammary epithelial cell (HMEC) mammosphere formation in a dose-dependent manner. A similar increase in sphere formation was seen in human inflammatory (SUM149) and non-inflammatory breast cancer cell lines (MCF-7) but not in primary inflammatory breast cancer cells (MDA-IBC-3). We determined that increased mammosphere formation can be mediated by secreted factors as MSC conditioned media from MSC spheroids significantly increased HMEC, MCF-7 and SUM149 mammosphere formation by 6.4 to 21-fold. Mammospheres grown in MSC conditioned media had lower levels of the cell adhesion protein, E-cadherin, and increased expression of N-cadherin in SUM149 and HMEC cells, characteristic of a pro-invasive mesenchymal phenotype. Co-injection with MSC in vivo resulted in a reduced latency time to develop detectable MCF-7 and MDA-IBC-3 tumors and increased the growth of MDA-IBC-3 tumors. Furthermore, E-cadherin expression was decreased in MDA-IBC-3 xenografts with co-injection of MSC.

Conclusions

MSC increase the efficiency of primary mammosphere formation in normal and malignant breast cells and decrease E-cadherin expression, a biologic event associated with breast cancer progression and resistance to therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号