首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1141篇
  免费   55篇
  2022年   13篇
  2021年   22篇
  2020年   12篇
  2019年   20篇
  2018年   17篇
  2017年   20篇
  2016年   26篇
  2015年   44篇
  2014年   41篇
  2013年   85篇
  2012年   111篇
  2011年   103篇
  2010年   67篇
  2009年   43篇
  2008年   80篇
  2007年   93篇
  2006年   80篇
  2005年   66篇
  2004年   42篇
  2003年   52篇
  2002年   55篇
  2001年   11篇
  2000年   6篇
  1999年   6篇
  1998年   10篇
  1997年   7篇
  1996年   7篇
  1995年   8篇
  1994年   8篇
  1993年   7篇
  1992年   3篇
  1991年   1篇
  1990年   2篇
  1989年   3篇
  1987年   1篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1979年   2篇
  1978年   1篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1963年   1篇
  1962年   1篇
  1956年   1篇
  1954年   1篇
排序方式: 共有1196条查询结果,搜索用时 203 毫秒
981.
Fumagillin, an irreversible inhibitor of MetAP2, has been shown to potently inhibit growth of malaria parasites in vitro. Here, we demonstrate activity of fumagillin analogs with an improved pharmacokinetic profile against malaria parasites, trypanosomes, and amoebas. A subset of the compounds showed efficacy in a murine malaria model. The observed SAR forms a basis for further optimization of fumagillin based inhibitors against parasitic targets by inhibition of MetAP2.  相似文献   
982.
983.
We studied the effect of iron deficiency, i.e., 24-h preincubation in iron-free medium, and the effect of high level of non-transferrin iron, i.e., the preincubation in ferric citrate medium containing 500 muM ferric citrate, on the expression of DMT1, Dcytb, ferroportin, hephaestin, and ceruloplasmin in various functional types of human cells. The expression of these proteins potentially involved in non-transferrin iron transport across cell membranes was tested on mRNA level by quantitative real-time PCR as well as on protein level by western blot analysis in Caco-2 (colorectal carcinoma), K562 (erythroleukemia), and HEP-G2 (hepatocellular carcinoma) cells. We found that changes in non-transferrin iron availability, i.e., iron deficiency and high level of non-transferrin iron, affect the expression of tested proteins in a cell type-specific manner. We also demonstrated that changes in the expression on mRNA level do not often correlate with relevant changes on protein level.  相似文献   
984.
985.
Aims and BackgroundTo evaluate toxicity and the radical resection rate in gastric adenocarcinoma treated with preoperative neoadjuvant chemoradiation.Materials & Methods32 patients, 22 males and 10 females with gastric adenocarcinoma, were treated with chemoradiation and hyperthermia.ResultsThe neoadjuvant regimen was completed as planned in 19/32 (59 %) patients; in the remaining patients the intensity of chemotherapy had to be reduced because of haematological and gastrointestinal toxicity. Surgical stage was as follows: 2 patients pathologically complete response, 3 patients AJCC stage I.A, 5 patients stage I.B, 7 patients stage II, 7 patients stage III.A, 1 patient stage III.B, 7 patients stage IV. R0 resection was achieved in 19/32 (59%) patients, R1 in 2/32 (6%) patients and R2 in 11 (34%) patients. Downstaging after neoadjuvant chemoradiotherapy was achieved in 17/32 (53%) patients. At the date of evaluation (31 March 2009), 4 patients were still alive 58, 81, 86 and 98 months from the date of diagnosis. Median survival was 18 months (95% confidence interval: 13–38 months). One-year survival was 69% (95% confidence interval: 53%–85%). Four-year survival was 19% (95% C.I.: 5%–34%).ConclusionsPreoperative neoadjuvant chemoradiotherapy has acceptable toxicity, and can lead to a high rate of R0 resections.  相似文献   
986.
987.
Chromatin modifications are an important component of the of DNA damage response (DDR) network that safeguard genomic integrity. Recently, we demonstrated nucleotide excision repair (NER)–dependent histone H2A ubiquitination at sites of ultraviolet (UV)-induced DNA damage. In this study, we show a sustained H2A ubiquitination at damaged DNA, which requires dynamic ubiquitination by Ubc13 and RNF8. Depletion of these enzymes causes UV hypersensitivity without affecting NER, which is indicative of a function for Ubc13 and RNF8 in the downstream UV–DDR. RNF8 is targeted to damaged DNA through an interaction with the double-strand break (DSB)–DDR scaffold protein MDC1, establishing a novel function for MDC1. RNF8 is recruited to sites of UV damage in a cell cycle–independent fashion that requires NER-generated, single-stranded repair intermediates and ataxia telangiectasia–mutated and Rad3-related protein. Our results reveal a conserved pathway of DNA damage–induced H2A ubiquitination for both DSBs and UV lesions, including the recruitment of 53BP1 and Brca1. Although both lesions are processed by independent repair pathways and trigger signaling responses by distinct kinases, they eventually generate the same epigenetic mark, possibly functioning in DNA damage signal amplification.  相似文献   
988.
Converging evidence leaves little doubt that a change in the conformation of prion protein (PrPC) from a mainly α-helical to a β-sheet rich PrP-scrapie (PrPSc) form is the main event responsible for prion disease associated neurotoxicity. However, neither the mechanism of toxicity by PrPSc, nor the normal function of PrPC is entirely clear. Recent reports suggest that imbalance of iron homeostasis is a common feature of prion infected cells and mouse models, implicating redox-iron in prion disease pathogenesis. In this report, we provide evidence that PrPC mediates cellular iron uptake and transport, and mutant PrP forms alter cellular iron levels differentially. Using human neuroblastoma cells as models, we demonstrate that over-expression of PrPC increases intra-cellular iron relative to non-transfected controls as indicated by an increase in total cellular iron, the cellular labile iron pool (LIP), and iron content of ferritin. As a result, the levels of iron uptake proteins transferrin (Tf) and transferrin receptor (TfR) are decreased, and expression of iron storage protein ferritin is increased. The positive effect of PrPC on ferritin iron content is enhanced by stimulating PrPC endocytosis, and reversed by cross-linking PrPC on the plasma membrane. Expression of mutant PrP forms lacking the octapeptide-repeats, the membrane anchor, or carrying the pathogenic mutation PrP102L decreases ferritin iron content significantly relative to PrPC expressing cells, but the effect on cellular LIP and levels of Tf, TfR, and ferritin is complex, varying with the mutation. Neither PrPC nor the mutant PrP forms influence the rate or amount of iron released into the medium, suggesting a functional role for PrPC in cellular iron uptake and transport to ferritin, and dysfunction of PrPC as a significant contributing factor of brain iron imbalance in prion disorders.  相似文献   
989.
The repetitive sequence PisTR-A has an unusual organization in the pea (Pisum sativum) genome, being present both as short dispersed repeats as well as long arrays of tandemly arranged satellite DNA. Cloning, sequencing and FISH analysis of both PisTR-A variants revealed that the former occurs in the genome embedded within the sequence of Ty3/gypsy-like Ogre elements, whereas the latter forms homogenized arrays of satellite repeats at several genomic loci. The Ogre elements carry the PisTR-A sequences in their 3′ untranslated region (UTR) separating the gag-pol region from the 3′ LTR. This region was found to be highly variable among pea Ogre elements, and includes a number of other tandem repeats along with or instead of PisTR-A. Bioinformatic analysis of LTR-retrotransposons mined from available plant genomic sequence data revealed that the frequent occurrence of variable tandem repeats within 3′ UTRs is a typical feature of the Tat lineage of plant retrotransposons. Comparison of these repeats to known plant satellite sequences uncovered two other instances of satellites with sequence similarity to a Tat-like retrotransposon 3′ UTR regions. These observations suggest that some retrotransposons may significantly contribute to satellite DNA evolution by generating a library of short repeat arrays that can subsequently be dispersed through the genome and eventually further amplified and homogenized into novel satellite repeats.  相似文献   
990.
BackgroundThe acetylcholinesterase knock-out mouse lives to adulthood despite 60-fold elevated acetylcholine concentrations in the brain that are lethal to wild-type animals. Part of its mechanism of survival is a 50% decrease in muscarinic and nicotinic receptors and a 50% decrease in adrenoceptor levels.HypothesisThe hypothesis was tested that the dopaminergic neuronal system had also adapted.MethodsRadioligand binding assays measured dopamine receptor level and binding affinity in the striatum. Immunohistochemistry of brain sections with specific antibodies visualized dopamine transporter. Effects on the intracellular compartment were measured as cAMP content, PI-phospholipase C activity.ResultsDopamine receptor levels were decreased 28-fold for the D1-like, and more than 37-fold for the D2-like receptors, though binding affinity was normal. Despite these huge changes in receptor levels, dopamine transporter levels were not affected. The intracellular compartment had normal levels of cAMP and PI-phospholipase C activity.ConclusionSurvival of the acetylcholinesterase knock-out mouse could be linked to adaptation of many neuronal systems during development including the cholinergic, adrenergic and dopaminergic. These adaptations balance the overstimulation of cholinergic receptors caused by high acetylcholine concentrations and thus maintain homeostasis inside the cell, allowing the animal to live.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号