首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1141篇
  免费   55篇
  2022年   13篇
  2021年   22篇
  2020年   12篇
  2019年   20篇
  2018年   17篇
  2017年   20篇
  2016年   26篇
  2015年   44篇
  2014年   41篇
  2013年   85篇
  2012年   111篇
  2011年   103篇
  2010年   67篇
  2009年   43篇
  2008年   80篇
  2007年   93篇
  2006年   80篇
  2005年   66篇
  2004年   42篇
  2003年   52篇
  2002年   55篇
  2001年   11篇
  2000年   6篇
  1999年   6篇
  1998年   10篇
  1997年   7篇
  1996年   7篇
  1995年   8篇
  1994年   8篇
  1993年   7篇
  1992年   3篇
  1991年   1篇
  1990年   2篇
  1989年   3篇
  1987年   1篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1979年   2篇
  1978年   1篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1963年   1篇
  1962年   1篇
  1956年   1篇
  1954年   1篇
排序方式: 共有1196条查询结果,搜索用时 15 毫秒
151.
Phosphonium lipocations were synthesized and evaluated for inhibition of the development of Plasmodium falciparum and Trypanosoma cruzi, etiological agents of malaria and Chagas disease, respectively. Optimal phthalimides and 1,4-naphthoquinone-based lipocations were active in vitro at mid-high nM concentrations against P. falciparum and low μM concentrations against T. cruzi.  相似文献   
152.
At present, Cape gooseberry (Physalis peruviana) fruit is one of the less used raw materials of plant origin, which can be used for human nutrition. This fruit, as well as alimentary products made of it, were used by healers in folk medicine in the distant past. The aim of this study was to monitor and evaluate the antioxidant capacity of fresh fruit of three Cape gooseberry cultivars ‘Giant’, ‘Golden berry’ and ‘Inka’. Antioxidant capacity was also tested, on the basis of the scavenging effect of reactive oxygen species (ROS) and lipid peroxidation of methanolic extracts made of fresh fruit. These results were further extended and supplemented with determinates of the vitamin C and total phenolic contents. These analyses were made for three consecutive years. The highest values of antioxidant capacity were observed in the ‘Inka’ cultivar (9.31 grams of ascorbic acid equivalents kg−1 of fresh mass). In this cultivar, the obtained results were corroborated also in ROS and the contents of vitamin C and total phenolics. Due to a high antioxidant capacity of this fruit species, the results presented should increase its popularity above all as a promising raw material, which can be used for human nutrition.  相似文献   
153.
Centromeres in most higher eukaryotes are composed of long arrays of satellite repeats. By contrast, most newly formed centromeres (neocentromeres) do not contain satellite repeats and instead include DNA sequences representative of the genome. An unknown question in centromere evolution is how satellite repeat-based centromeres evolve from neocentromeres. We conducted a genome-wide characterization of sequences associated with CENH3 nucleosomes in potato (Solanum tuberosum). Five potato centromeres (Cen4, Cen6, Cen10, Cen11, and Cen12) consisted primarily of single- or low-copy DNA sequences. No satellite repeats were identified in these five centromeres. At least one transcribed gene was associated with CENH3 nucleosomes. Thus, these five centromeres structurally resemble neocentromeres. By contrast, six potato centromeres (Cen1, Cen2, Cen3, Cen5, Cen7, and Cen8) contained megabase-sized satellite repeat arrays that are unique to individual centromeres. The satellite repeat arrays likely span the entire functional cores of these six centromeres. At least four of the centromeric repeats were amplified from retrotransposon-related sequences and were not detected in Solanum species closely related to potato. The presence of two distinct types of centromeres, coupled with the boom-and-bust cycles of centromeric satellite repeats in Solanum species, suggests that repeat-based centromeres can rapidly evolve from neocentromeres by de novo amplification and insertion of satellite repeats in the CENH3 domains.  相似文献   
154.
The benthic amphipod Diporeia spp. was once the predominant macroinvertebrate in deep, offshore regions of the Laurentian Great Lakes. However, since the early 1990s, Diporeia populations have steadily declined across the area. It has been hypothesized that this decline is due to starvation from increasing competition for food with invasive dreissenid mussels. In order to gain a better understanding of the changes in Diporeia physiology during starvation, we applied two-dimensional gas chromatography coupled with time of flight mass spectrometry (GCXGC/TOF-MS) for investigating the responses in Diporeia metabolome during starvation. We starved Diporeia for 60 days and collected five organisms every 12 days for metabolome analyses. Upon arrival to the laboratory, organisms were flash frozen and served as control (day 0). We observed an increase in lipid oxidation and protein catabolism with subsequent declines of essential amino acids (proline, glutamine, and phenylalanine), down-regulation of glycerophospholipid and sphingolipid metabolism, and decreased polyunsaturated fatty acid abundance in nutritionally stressed Diporeia. Abundance of 1-Iodo-2-methylundecane, a metabolite closely related to insect pheromones, also declined with starvation. This research has further substantiated the applicability of GCXGC/TOF-MS as a research tool in the field of environmental metabolomics. The next step is to apply this new knowledge for evaluating nutritional status of feral Diporeia to elucidate the underlying cause(s) responsible for their decline in the Great Lakes.  相似文献   
155.
156.
The belly button is one of the habitats closest to us, and yet it remains relatively unexplored. We analyzed bacteria and arachaea from the belly buttons of humans from two different populations sampled within a nation-wide citizen science project. We examined bacterial and archaeal phylotypes present and their diversity using multiplex pyrosequencing of 16S rDNA libraries. We then tested the oligarchy hypothesis borrowed from tropical macroecology, namely that the frequency of phylotypes in one sample of humans predicts its frequency in another independent sample. We also tested the predictions that frequent phylotypes (the oligarchs) tend to be common when present, and tend to be more phylogenetically clustered than rare phylotypes. Once rarefied to four hundred reads per sample, bacterial communities from belly buttons proved to be at least as diverse as communities known from other skin studies (on average 67 bacterial phylotypes per belly button). However, the belly button communities were strongly dominated by a few taxa: only 6 phylotypes occurred on >80% humans. While these frequent bacterial phylotypes (the archaea were all rare) are a tiny part of the total diversity of bacteria in human navels (<0.3% of phylotypes), they constitute a major portion of individual reads (∼1/3), and are predictable among independent samples of humans, in terms of both the occurrence and evolutionary relatedness (more closely related than randomly drawn equal sets of phylotypes). Thus, the hypothesis that “oligarchs” dominate diverse assemblages appears to be supported by human-associated bacteria. Although it remains difficult to predict which species of bacteria might be found on a particular human, predicting which species are most frequent (or rare) seems more straightforward, at least for those species living in belly buttons.  相似文献   
157.

Background

Proteomics and metalloproteomics are rapidly developing interdisciplinary fields providing enormous amounts of data to be classified, evaluated and interpreted. Approaches offered by bioinformatics and also by biostatistical data analysis and treatment are therefore of extreme interest. Numerous methods are now available as commercial or open source tools for data processing and modelling ready to support the analysis of various datasets. The analysis of scientific data remains a big challenge, because each new task sets its specific requirements and constraints that call for the design of a targeted data pre-processing approach.

Methodology/Principal Findings

This study proposes a mathematical approach for evaluating and classifying datasets obtained by electrochemical analysis of metallothionein in rat 9 tissues (brain, heart, kidney, eye, spleen, gonad, blood, liver and femoral muscle). Tissue extracts were heated and then analysed using the differential pulse voltammetry Brdicka reaction. The voltammograms were subsequently processed. Classification models were designed making separate use of two groups of attributes, namely attributes describing local extremes, and derived attributes resulting from the level = 5 wavelet transform.

Conclusions/Significance

On the basis of our results, we were able to construct a decision tree that makes it possible to distinguish among electrochemical analysis data resulting from measurements of all the considered tissues. In other words, we found a way to classify an unknown rat tissue based on electrochemical analysis of the metallothionein in this tissue.  相似文献   
158.
159.
The conserved MRE11–RAD50–NBS1 (MRN) complex is an important sensor of DNA double-strand breaks (DSBs) and facilitates DNA repair by homologous recombination (HR) and end joining. Here, we identify NBS1 as a target of cyclin-dependent kinase (CDK) phosphorylation. We show that NBS1 serine 432 phosphorylation occurs in the S, G2 and M phases of the cell cycle and requires CDK activity. This modification stimulates MRN-dependent conversion of DSBs into structures that are substrates for repair by HR. Impairment of NBS1 phosphorylation not only negatively affects DSB repair by HR, but also prevents resumption of DNA replication after replication-fork stalling. Thus, CDK-mediated NBS1 phosphorylation defines a molecular switch that controls the choice of repair mode for DSBs.  相似文献   
160.
Bordetella adenylate cyclase toxin-hemolysin (CyaA) penetrates the cytoplasmic membrane of phagocytes and employs two distinct conformers to exert its multiple activities. One conformer forms cation-selective pores that permeabilize phagocyte membrane for efflux of cytosolic potassium. The other conformer conducts extracellular calcium ions across cytoplasmic membrane of cells, relocates into lipid rafts, translocates the adenylate cyclase enzyme (AC) domain into cells and converts cytosolic ATP to cAMP. We show that the calcium-conducting activity of CyaA controls the path and kinetics of endocytic removal of toxin pores from phagocyte membrane. The enzymatically inactive but calcium-conducting CyaA-AC toxoid was endocytosed via a clathrin-dependent pathway. In contrast, a doubly mutated (E570K+E581P) toxoid, unable to conduct Ca2+ into cells, was rapidly internalized by membrane macropinocytosis, unless rescued by Ca2+ influx promoted in trans by ionomycin or intact toxoid. Moreover, a fully pore-forming CyaA-ΔAC hemolysin failed to permeabilize phagocytes, unless endocytic removal of its pores from cell membrane was decelerated through Ca2+ influx promoted by molecules locked in a Ca2+-conducting conformation by the 3D1 antibody. Inhibition of endocytosis also enabled the native B. pertussis-produced CyaA to induce lysis of J774A.1 macrophages at concentrations starting from 100 ng/ml. Hence, by mediating calcium influx into cells, the translocating conformer of CyaA controls the removal of bystander toxin pores from phagocyte membrane. This triggers a positive feedback loop of exacerbated cell permeabilization, where the efflux of cellular potassium yields further decreased toxin pore removal from cell membrane and this further enhances cell permeabilization and potassium efflux.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号