首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   834篇
  免费   74篇
  国内免费   1篇
  2021年   7篇
  2020年   10篇
  2019年   6篇
  2018年   5篇
  2017年   8篇
  2016年   16篇
  2015年   16篇
  2014年   26篇
  2013年   35篇
  2012年   27篇
  2011年   33篇
  2010年   31篇
  2009年   24篇
  2008年   29篇
  2007年   33篇
  2006年   20篇
  2005年   24篇
  2004年   23篇
  2003年   20篇
  2002年   20篇
  2001年   29篇
  2000年   29篇
  1999年   32篇
  1998年   17篇
  1997年   12篇
  1996年   14篇
  1995年   13篇
  1994年   11篇
  1993年   15篇
  1992年   16篇
  1991年   17篇
  1990年   19篇
  1989年   16篇
  1988年   17篇
  1987年   9篇
  1986年   11篇
  1985年   22篇
  1984年   9篇
  1983年   14篇
  1981年   5篇
  1979年   9篇
  1978年   7篇
  1977年   9篇
  1975年   9篇
  1974年   7篇
  1973年   8篇
  1969年   6篇
  1967年   5篇
  1923年   5篇
  1888年   4篇
排序方式: 共有909条查询结果,搜索用时 609 毫秒
31.
32.
33.
The best‐established function of the melanoma‐suppressor p16 is mediation of cell senescence, a permanent arrest following cell proliferation or certain stresses. The importance of p16 in melanoma suggests indolence of the other major senescence pathway through p53. Little or no p53 is expressed in senescent normal human melanocytes, but p16‐deficient melanocytes can undergo p53‐mediated senescence. As p16 expression occurs in nevi but falls with progression toward melanoma, we here investigated whether p53‐dependent senescence occurs at some stage and, if not, what defects were detectable in this pathway, using immunohistochemistry. Phosphorylated checkpoint kinase 2 (CHEK2) can mediate DNA‐damage signaling, and under some conditions senescence, by phosphorylating and activating p53. Remarkably, we detected no prevalent p53‐mediated senescence in any of six classes of lesions. Two separate defects in p53 signaling appeared common: in nevi, lack of p53 phosphorylation by activated CHEK2, and in melanomas, defective p21 upregulation by p53 even when phosphorylated.  相似文献   
34.
There are two schools of thought regarding the cyclooxygenase (COX) isoform active in the vasculature. Using urinary prostacyclin markers some groups have proposed that vascular COX-2 drives prostacyclin release. In contrast, we and others have found that COX-1, not COX-2, is responsible for vascular prostacyclin production. Our experiments have relied on immunoassays to detect the prostacyclin breakdown product, 6-keto-PGF and antibodies to detect COX-2 protein. Whilst these are standard approaches, used by many laboratories, antibody-based techniques are inherently indirect and have been criticized as limiting the conclusions that can be drawn. To address this question, we measured production of prostanoids, including 6-keto-PGF, by isolated vessels and in the circulation in vivo using liquid chromatography tandem mass spectrometry and found values essentially identical to those obtained by immunoassay. In addition, we determined expression from the Cox2 gene using a knockin reporter mouse in which luciferase activity reflects Cox2 gene expression. Using this we confirm the aorta to be essentially devoid of Cox2 driven expression. In contrast, thymus, renal medulla, and regions of the brain and gut expressed substantial levels of luciferase activity, which correlated well with COX-2-dependent prostanoid production. These data are consistent with the conclusion that COX-1 drives vascular prostacyclin release and puts the sparse expression of Cox2 in the vasculature in the context of the rest of the body. In doing so, we have identified the thymus, gut, brain and other tissues as target organs for consideration in developing a new understanding of how COX-2 protects the cardiovascular system.  相似文献   
35.
Schistosomiasis vector snails are subjected to extreme seasonal changes, particularly in ephemeral rivers and lentic waterbodies. In the tropics, aestivation is one of the adaptive strategies for survival and is used by snails in times of extremely high temperatures and desiccation. Aestivation therefore plays an important role in maintaining the transmission of schistosomiasis. This review assesses the possible impacts of climate change on the temporal and spatial distribution of schistosomiasis-transmitting snails with special emphasis on aestivation, and discusses the effect of schistosome infection on aestivation ability. The impacts of parasite development on snails, as well as physiological changes, are discussed with reference to schistosomiasis transmission. This review shows that schistosome-infected snails have lower survival rates during aestivation, and that those that survive manage to get rid of the infection. In general, snail aestivation ability is poor and survival chances diminish with time. Longer dry periods result in fewer, as well as uninfected, snails. However, the ability of the surviving snails to repopulate the habitats is high.  相似文献   
36.
Pattern recognition receptors (PRRs) play a key role in plant and animal innate immunity. PRR binding of their cognate ligand triggers a signaling network and activates an immune response. Activation of PRR signaling must be controlled prior to ligand binding to prevent spurious signaling and immune activation. Flagellin perception in Arabidopsis through FLAGELLIN‐SENSITIVE 2 (FLS2) induces the activation of mitogen‐activated protein kinases (MAPKs) and immunity. However, the precise molecular mechanism that connects activated FLS2 to downstream MAPK cascades remains unknown. Here, we report the identification of a differentially phosphorylated MAP kinase kinase kinase that also interacts with FLS2. Using targeted proteomics and functional analysis, we show that MKKK7 negatively regulates flagellin‐triggered signaling and basal immunity and this requires phosphorylation of MKKK7 on specific serine residues. MKKK7 attenuates MPK6 activity and defense gene expression. Moreover, MKKK7 suppresses the reactive oxygen species burst downstream of FLS2, suggesting that MKKK7‐mediated attenuation of FLS2 signaling occurs through direct modulation of the FLS2 complex.  相似文献   
37.
Mangrove forests play an important role in climate change adaptation and mitigation by maintaining coastline elevations relative to sea level rise, protecting coastal infrastructure from storm damage, and storing substantial quantities of carbon (C) in live and detrital pools. Determining the efficacy of mangroves in achieving climate goals can be complicated by difficulty in quantifying C inputs (i.e., differentiating newer inputs from younger trees from older residual C pools), and mitigation assessments rarely consider potential offsets to CO2 storage by methane (CH4) production in mangrove sediments. The establishment of non‐native Rhizophora mangle along Hawaiian coastlines over the last century offers an opportunity to examine the role mangroves play in climate mitigation and adaptation both globally and locally as novel ecosystems. We quantified total ecosystem C storage, sedimentation, accretion, sediment organic C burial and CH4 emissions from ~70 year old R. mangle stands and adjacent uninvaded mudflats. Ecosystem C stocks of mangrove stands exceeded mudflats by 434 ± 33 Mg C/ha, and mangrove establishment increased average coastal accretion by 460%. Sediment organic C burial increased 10‐fold (to 4.5 Mg C ha?1 year?1), double the global mean for old growth mangrove forests, suggesting that C accumulation from younger trees may occur faster than previously thought, with implications for mangrove restoration. Simulations indicate that increased CH4 emissions from sediments offset ecosystem CO2 storage by only 2%–4%, equivalent to 30–60 Mg CO2‐eq/ha over mangrove lifetime (100 year sustained global warming potential). Results highlight the importance of mangroves as novel systems that can rapidly accumulate C, have a net positive atmospheric greenhouse gas removal effect, and support shoreline accretion rates that outpace current sea level rise. Sequestration potential of novel mangrove forests should be taken into account when considering their removal or management, especially in the context of climate mitigation goals.  相似文献   
38.
Climate change is expected to alter precipitation patterns worldwide, which will affect streamflow in riverine ecosystems. It is vital to understand the impacts of projected flow variations, especially in tropical regions where the effects of climate change are expected to be one of the earliest to emerge. Space‐for‐time substitutions have been successful at predicting effects of climate change in terrestrial systems by using a spatial gradient to mimic the projected temporal change. However, concerns have been raised that the spatial variability in these models might not reflect the temporal variability. We utilized a well‐constrained rainfall gradient on Hawaii Island to determine (a) how predicted decreases in flow and increases in flow variability affect stream food resources and consumers and (b) if using a high temporal (monthly, four streams) or a high spatial (annual, eight streams) resolution sampling scheme would alter the results of a space‐for‐time substitution. Declines in benthic and suspended resource quantity (10‐ to 40‐fold) and quality (shift from macrophyte to leaf litter dominated) contributed to 35‐fold decreases in macroinvertebrate biomass with predicted changes in the magnitude and variability in the flow. Invertebrate composition switched from caddisflies and damselflies to taxa with faster turnover rates (mosquitoes, copepods). Changes in resource and consumer composition patterns were stronger with high temporal resolution sampling. However, trends and ranges of results did not differ between the two sampling regimes, indicating that a suitable, well‐constrained spatial gradient is an appropriate tool for examining temporal change. Our study is the first to investigate resource to community wide effects of climate change on tropical streams on a spatial and temporal scale. We determined that predicted flow alterations would decrease stream resource and consumer quantity and quality, which can alter stream function, as well as biomass and habitat for freshwater, marine, and terrestrial consumers dependent on these resources.  相似文献   
39.
The ability of the wild-type XIAP BIR3 domain as well as its Trp323Ser variant in inhibition of human caspase-9, binding to AVPFVASLPN (SMAC-peptide), SMAC protein, and mature caspase-9 was investigated. In order to investigate the role of W323 on these interactions, this residue was mutated to Serine. Circular dichroism as well as thermal denaturation studies showed that W323S mutation did not hamper proper folding of the protein. The dissociation constants for the interaction of the wild type BIR3 as well as its mutant to Smac-type peptide were found to be 1.8 and 27 muM, respectively. The inhibition of and binding to caspase-9 by wild-type BIR3 and its mutant were also compared. While the wild-type protein potently inhibited the enzyme, the mutant failed to do so. The lack of caspase-9 inhibition was due to absence of interaction of the mutant BIR3 with mature caspase-9. These results indicate that Trp323 of BIR3 plays a pivotal role both in maintaining necessary conformation for caspase-9 interaction and to a lesser extent, recognition of Smac-type peptide. Moreover, decreased stability of the mutant compared with the wild type indicates that W323 is essential for maintaining the stability BIR3-Smac-peptide complex.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号