首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   117篇
  免费   10篇
  2024年   1篇
  2022年   5篇
  2021年   3篇
  2020年   3篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2016年   5篇
  2015年   4篇
  2014年   5篇
  2013年   13篇
  2012年   7篇
  2011年   6篇
  2010年   3篇
  2008年   8篇
  2007年   7篇
  2006年   4篇
  2005年   3篇
  2004年   2篇
  2003年   4篇
  2002年   3篇
  2001年   4篇
  2000年   6篇
  1999年   3篇
  1995年   1篇
  1994年   3篇
  1991年   2篇
  1990年   4篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1978年   2篇
  1976年   1篇
  1972年   2篇
  1969年   2篇
排序方式: 共有127条查询结果,搜索用时 46 毫秒
51.
The 33 amino acid scorpion toxin maurocalcine (MCa) has been shown to modify the gating of the skeletal-type ryanodine receptor (RyR1). Here we explored the effects of MCa and its mutants ([Ala8]MCa, [Ala19]MCa, [Ala20]MCa, [Ala22]MCa, [Ala23]MCa, and [Ala24]MCa) on RyR1 incorporated into artificial lipid bilayers and on elementary calcium release events (ECRE) in rat and frog skeletal muscle fibers. The peptides induced long-lasting subconductance states (LLSS) on RyR1 that lasted for several seconds. However, their average length and frequency were decreased if the mutation was placed farther away in the 3D structure from the critical 24Arg residue. The effect was strongly dependent on the direction of the current through the channel. If the direction was similar to that followed by calcium during release, the peptides were 8- to 10-fold less effective. In fibers long-lasting calcium release events were observed after the addition of the peptides. The average length of these events correlated well with the duration of LLSS. These data suggest that the effect of the peptide is governed by the large charged surface formed by residues Lys20, Lys22, Arg23, Arg24, and Lys8. Our observations also indicate that the results from bilayer experiments mimic the in situ effects of MCa on RyR1.  相似文献   
52.
We have investigated the molecular mechanisms whereby the I-II loop controls voltage-dependent inactivation in P/Q calcium channels. We demonstrate that the I-II loop is localized in a central position to control calcium channel activity through the interaction with several cytoplasmic sequences; including the III-IV loop. Several experiments reveal the crucial role of the interaction between the I-II loop and the III-IV loop in channel inactivation. First, point mutations of two amino acid residues of the I-II loop of Ca(v)2.1 (Arg-387 or Glu-388) facilitate voltage-dependent inactivation. Second, overexpression of the III-IV loop, or injection of a peptide derived from this loop, produces a similar inactivation behavior than the mutated channels. Third, the III-IV peptide has no effect on channels mutated in the I-II loop. Thus, both point mutations and overexpression of the III-IV loop appear to act similarly on inactivation, by competing off the native interaction between the I-II and the III-IV loops of Ca(v)2.1. As they are known to affect inactivation, we also analyzed the effects of beta subunits on these interactions. In experiments in which the beta(4) subunit is co-expressed, the III-IV peptide is no longer able to regulate channel inactivation. We conclude that (i) the contribution of the I-II loop to inactivation is partly mediated by an interaction with the III-IV loop and (ii) the beta subunits partially control inactivation by modifying this interaction. These data provide novel insights into the mechanisms whereby the beta subunit, the I-II loop, and the III-IV loop altogether can contribute to regulate inactivation in high voltage-activated calcium channels.  相似文献   
53.
SPC3, a synthetic multibranched peptide including the GPGRAF consensus motif of the human immunodeficiency virus type 1 (HIV-1) gp120 V3-loop is a potent inhibitor of HIV infection of human CD4+ lymphocytes, macrophages and CD4-/galactosylceramide+ human colon epithelial cells and is currently tested in phase II clinical trials (FDA protocol 257 A). The antiviral property of SPC3 was further investigated for its ability to inhibit LAV-2/B, an HIV-2 clone with a CD4-independent tropism. SPC3 inhibited the LAV-2/B-mediated infection of B-cell line which does not express the CD4 and the galactosylceramide molecules on their cell surface, suggesting an SPC3-sensitive CD4/galactosylceramide-independent pathway of viral infection in HIV susceptible cells. The molecular mechanism of the peptide inhibition was also investigated. The data suggested that the SPC3-mediated inhibition does not result from a direct competition between SPC3 and gp120 binding to the cell surface of the target cell.  相似文献   
54.
In a laboratory study, metal contamination experiments were conducted to investigate the effects of two free copper concentrations (10?9 and 10?8 M) on cell growth and on dissolved organic matter exudation by a marine diatom Skeletonema costatum. Throughout incubation, the growth kinetics and exudation of extracellular molecules (i.e. dissolved organic carbon (DOC) and the fluorescent organic matter) were determined. Results revealed an inhibition of S. costatum growth when the free copper level increased (from 10?9 to 10?8). Furthermore, DOC release was more significant in cultures contaminated by 10?9 M Cu2+ than in control, suggesting a coping mechanism developed by this species. In this study, samples were daily analysed by 3D-fluorescence and PARAFAC algorithm, in order to compare the fluorescent material produced during growth under different contaminations. PARAFAC treatment revealed two main contributions: one related to the biological activity (C1), the other linked to the marine organic matter (C2). The third component C3 was typically protein-like. This fluorophore was considered as a tryptophan-like fluorophore, whereas the C1 and the C2 components were associated to marine production such as humic matter.  相似文献   
55.
Maurocalcine (MCa) is a 33-amino-acid residue peptide toxin isolated from the scorpion Scorpio maurus palmatus. External application of MCa to cultured myotubes is known to produce Ca2+ release from intracellular stores. MCa binds directly to the skeletal muscle isoform of the ryanodine receptor, an intracellular channel target of the endoplasmic reticulum, and induces long lasting channel openings in a mode of smaller conductance. Here we investigated the way MCa proceeds to cross biological membranes to reach its target. A biotinylated derivative of MCa was produced (MCa(b)) and complexed with a fluorescent indicator (streptavidine-cyanine 3) to follow the cell penetration of the toxin. The toxin complex efficiently penetrated into various cell types without requiring metabolic energy (low temperature) or implicating an endocytosis mechanism. MCa appeared to share the same features as the so-called cell-penetrating peptides. Our results provide evidence that MCa has the ability to act as a molecular carrier and to cross cell membranes in a rapid manner (1-2 min), making this toxin the first demonstrated example of a scorpion toxin that translocates into cells.  相似文献   
56.
This is the first report on the degradation of poly(3-hydroxybutyrate) (PHB), and its copolymers poly(3-hydroxyvalerate) P(3HB-co-10-20% HV) by Nocardiopsis aegyptia, a new species isolated from marine seashore sediments. The strain excreted an extracellular PHB depolymerase and grew efficiently on PHB or its copolymers as the sole carbon sources. The degradation activity was detectable by the formation of a transparent clearing zone around the colony on an agar Petri plate after 25 days, or a clearing depth under the colony in test tubes within 3 weeks. The previous techniques proved that the bacterium was able to assimilate the monomeric components of the shorter alkyl groups of the polymers. Nocardiopsis aegyptia hydrolyzed copolymers 10-20% PHBV more rapidly than the homopolymer PHB. The bacterial degradation of the naturally occurring sheets of poly(3-hydroxybutyrate), and its copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) was observed by scanning electron microscopy (SEM). The samples were degraded at the surface and proceeded to the inner part of the materials. Clear morphological alterations of the polymers were noticed, indicating the degradative capability of the bacterium. Plackett-Burman statistical experimental design has been employed to optimize culture conditions for maximal enzyme activity. The main factors that had significant positive effects on PHB depolymerase activity of Nocardiopsis aegyptia were sodium gluconate, volume of medium/flask and age of inoculum. On the other hand, MgSO4.7H2O, KH2PO4, K2HPO4 and NH4NO3 exhibited negative effects. Under optimized culture conditions, the highest activity (0.664 U/mg protein) was achieved in a medium predicted to be near optimum containing (in g/L): PHB, 0.5; C6H11O7Na, 7.5; MgSO4.7H2O, 0.35; K2HPO4, 0.35; NH4NO3, 0.5; KH2PO4, 0.35; malt extract, 0.5 and prepared with 50% seawater. The medium was inoculated with 1% (v/v) spore suspension of 7 days old culture. Complete clarity of the medium was achieved after 3 days at 30 degrees C.  相似文献   
57.
Synthetic polymeric constructions (SPCs) including the consensus sequence of the human immunodeficiency virus type 1 (HIV-1) surface envelope glycoprotein gp120 V3 loop (GPGRAF) blocked the fusion between HIV-1- and HIV-2-infected cells and CD4+ uninfected cells. A structure-activity relationship study using V3 SPC analogs showed that the most efficient inhibitor of cell fusion was an eight-branched SPC with the hexapeptide motif GPGRAF (i.e., [GPGRAF]8-SPC). N-terminal acetylation or incorporation of D-amino acids in the GPGRAF sequence of this SPC resulted in significant loss of activity. Analogs with fewer than six residues in the motif (i.e., GPGRA or GPGR), as well as SPCs with a nonrelevant sequence, did not inhibit cell fusion, demonstrating the high specificity of the antifusion activity. [GPGRAF]8-SPC, which was not toxic to CEM cells at concentrations of up to 50 microM, inhibited 50% of HIV-1(LAI) replication in these cells at a concentration of 0.07 microM. Moreover, [GPGRAF]8-SPC inhibited the infection of human peripheral blood mononuclear cells by several HIV-1 and HIV-2 isolates, including laboratory strains [HIV-1(LAI), HIV-1(NDK), and HIV-2(ROD)], and fresh primary isolates, including two zidovudine-resistant HIV-1 isolates and two HIV-2 isolates obtained from infected individuals. The multibranched peptide also inhibited infection of human primary macrophages by the highly cytopathic macrophage-tropic isolate HIV-1(89.6). The antiviral activity of [GPGRAF]8-SPC was not related to a virucidal effect, since preincubation of HIV-1 with the peptide did not affect its infectious titer. This result is in agreement with the concept that the multibranched peptide mimics a part of the V3 loop and thus interacts with the host cell. The therapeutic properties of synthetic multibranched peptides based on the V3 loop consensus motif should be evaluated in HIV-infected patients.  相似文献   
58.
Response of cassava to water stress   总被引:4,自引:1,他引:3  
Summary Cassava (Manihot esculenta Crantz) is a staple food for a large sector of human population in the tropics. It is widely produced for its starchy roots by small farmers over a range of environments on poor infertile soils with virtually no inputs. It is highly productive under favorable conditions and produces reasonably well under adverse conditions where other crops fail. The crop, once established, cansurvive for several months without rain. There is a wide variation within the cassava germplasm for tolerance to prolonged drought and the possibility to breed and select for stable and relative high yields under favorable and adverse conditions does indeed exist. Research with several cassava clones at CIAT has shown that high root yield under mid—term stress is not incompatible with high yield under nonstress conditions. Plant types with high yield potential under both conditions (e.g. the hybrid CM 507-37) are characterized by having slightly higher than optimum leaf area index under nonstress conditions, higher leaf area ratio and more intensive and extensive fine root system.  相似文献   
59.
Four types of bioactive nano-silica were prepared by different methods, and were used to improve commercial dental Glass Ionomer Cement (GIC) bioactivity. The prepared powder samples were characterized by X-ray diffraction (XRD) to identify the formed phase; particle size and morphology were assessed by transmission electron microscope (TEM). The bioactivity of the prepared powder samples and its dental cement blends were applied in simulated body fluid (SBF). The change in surface morphology and composition after soaking in SBF after week at 37 °C were determined by scanning electron microscopy with energy dispersive spectroscopy (SEM with EDS) and Fourier transform infrared analyses (FTIR). Our results confirmed that the prepared silica powder exists in nano-scale. Precipitations of carbonate–apatite on the silica surface were observed by FT-IR spectroscopy and scanning electron microscopy. Silica dissolution and re-precipitation phenomena were also observed from SEM. The relationship between both phenomena during the in vitro test is discussed mainly in terms of structural and microstructural features of the silica. Combination of bioactive nano-silica with dental cement improves its bioactivity, which may be helpful to overcome marginal gap formation which is major disadvantage of the commercial dental cement.  相似文献   
60.
The herpes simplex virus virion host shutoff (vhs) protein (UL41 gene product) is a component of the HSV virion tegument that triggers shutoff of host protein synthesis and accelerated mRNA degradation during the early stages of HSV infection. Previous studies have demonstrated that extracts from HSV-infected cells and partially purified HSV virions display vhs-dependent RNase activity and that vhs is sufficient to trigger accelerated RNA degradation when expressed as the only HSV protein in an in vitro translation system derived from rabbit reticulocytes. We have used the rabbit reticulocyte translation system to characterize the mode of vhs-induced RNA decay in more detail. We report here that vhs-dependent RNA decay proceeds through endoribonucleolytic cleavage, is not affected by the presence of a 5' cap or a 3' poly(A) tail in the RNA substrate, requires Mg(2+), and occurs in the absence of ribosomes. Intriguingly, sites of preferential initial cleavage were clustered over the 5' quadrant of one RNA substrate that was characterized in detail. The vhs homologue of pseudorabies virus also induced accelerated RNA decay in this in vitro system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号