首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1197篇
  免费   65篇
  1262篇
  2024年   4篇
  2023年   11篇
  2022年   13篇
  2021年   45篇
  2020年   25篇
  2019年   22篇
  2018年   42篇
  2017年   27篇
  2016年   38篇
  2015年   42篇
  2014年   57篇
  2013年   81篇
  2012年   104篇
  2011年   88篇
  2010年   61篇
  2009年   61篇
  2008年   87篇
  2007年   73篇
  2006年   49篇
  2005年   46篇
  2004年   52篇
  2003年   36篇
  2002年   24篇
  2001年   14篇
  2000年   9篇
  1999年   3篇
  1998年   8篇
  1997年   8篇
  1995年   4篇
  1994年   4篇
  1993年   3篇
  1992年   9篇
  1991年   13篇
  1990年   7篇
  1989年   8篇
  1987年   5篇
  1986年   5篇
  1984年   4篇
  1981年   8篇
  1980年   4篇
  1979年   4篇
  1978年   5篇
  1977年   7篇
  1976年   5篇
  1975年   10篇
  1973年   4篇
  1970年   4篇
  1969年   4篇
  1964年   2篇
  1949年   2篇
排序方式: 共有1262条查询结果,搜索用时 15 毫秒
41.
A repeated batch fermentation system was used to produce ethanol using an osmotolerant Saccharomyces cerevisiae (VS3) immobilized in calcium alginate beads. For comparison free cells were also used to produce ethanol by repeated batch fermentation. Fermentation was carried for six cycles with 125, 250 or 500 beads using 150, 200 or 250 g glucose L−1 at 30°C. The maximum amount of ethanol produced by immobilized VS3 using 150 g L−1 glucose was only 44 g L−1 after 48 h, while the amount of ethanol produced by free cells in the first cycle was 72 g L−1. However in subsequent fed batch cultures more ethanol was produced by immobilized cells compared to free cells. The amount of ethanol produced by free cells decreased from 72 g L−1 to 25 g L−1 after the fourth cycle, while that of immobilized cells increased from 44 to 72 g L−1. The maximum amount of ethanol produced by immobilized VS3 cells using 150, 200 and 250 g glucose L−1 was 72.5, 93 and 87 g ethanol L−1 at 30°C. Journal of Industrial Microbiology & Biotechnology (2000) 24, 222–226. Received 16 September 1999/ Accepted in revised form 22 December 1999  相似文献   
42.
43.
The influence of kirromycin on the elongation factor Tu (EF-Tu) in its binary and ternary complexes was investigated. The equilibrium constant for the binding of the antibiotic to EF-Tu . GDP and EF-Tu . GTP was determined by circular dichroism titrations to be 4 x 10(6) M-1, and to EF-Tu . GTP . aa-tRNA by a combination of circular dichroism titrations and hydrolysis protection experiments to be 2 x 10(6) M-1. In the presence of kirromycin the binding of aminoacyl-tRNAs to EF-Tu . GTP is weakened by a factor of two. The antibiotic changes the conformation of the ternary complex in such a way that the aminoacyl moiety of the aminoacyl-tRNA is more accessible to the non-enzymatic hydrolysis. It is concluded that this structural alteration is responsible for the inhibitory action of the antibiotic.  相似文献   
44.
Fusarium infection of bananas is a global problem that threatens the production of bananas. This study looks at the effects of the infection upon the reactive oxygen species (ROS) system, as well as the induced antioxidant properties in the roots, stems, leaves and fruits. Results show that there is a greater amount of damage in infected tissue samples as opposed to non‐infected. The damage was observed to be higher in the root samples. ROS assays were divided into two classes: ROS assays and ROS‐scavenging assays. Of the ROS assays, lipoxygenase was observed to be higher in the infected samples, while peroxidase (POD) and polyphenol oxidase (PPO) were significantly higher in infected stem, leaf and fruit samples. Among root samples, there was no significant difference in POD activity and PPO was lower in infected samples. Induction of ROS is important for the hypersensitive response (HR) to function properly. The ROS‐scavenging enzymes, namely ascorbate peroxidase, guaiacol peroxidase and superoxide dismutase, exhibited higher levels in the infected tissue. This is most likely to counter the build‐up of the ROS enzymes and to prevent further cell death. The increase in ROS‐scavenging assays also correlates with higher antioxidant properties as antioxidants play a critical role in regulating the HR free radicals.  相似文献   
45.
Rapid spread of resistance to vancomycin has generated difficult to treat bacterial pathogens worldwide. Though vancomycin resistance is often conferred by the conjugative transposon Tn1549, it is yet unclear whether Tn1549 moves actively between bacteria. Here we demonstrate, through development of an in vivo assay system, that a mini‐Tn1549 can transpose in E. coli away from its natural Gram‐positive host. We find the transposon‐encoded INT enzyme and its catalytic tyrosine Y380 to be essential for transposition. A second Tn1549 protein, XIS is important for efficient and accurate transposition. We further show that DNA flanking the left transposon end is critical for excision, with changes to nucleotides 7 and 9 impairing movement. These mutations could be partially compensated for by changing the final nucleotide of the right transposon end, implying concerted excision of the two ends. With changes in these essential DNA sequences, or without XIS, a large amount of flanking DNA transposes with Tn1549. This rescues mobility and allows the transposon to capture and transfer flanking genomic DNA. We further identify the transposon integration target sites as TTTT‐N6‐AAAA. Overall, our results provide molecular insights into conjugative transposition and the adaptability of Tn1549 for efficient antibiotic resistance transfer.  相似文献   
46.
Phosphate depletion is one of the favorable ways to enhance the sewage water treatment with the algae, however, detailed information is essential with respect to internal phosphate concentration and physiology of the algae. The growth rate of the phosphate-starved Scenedesmus cells was reduced drastically after 48 h. Indicating cells entered in the stationary phase of the growth cycle. Fourier Transform Infrared analysis of phosphate-starved Scenedesmus cells showed the reduction in internal phosphate concentration and an increase in carbohydrate/phosphate and carbohydrate/lipid ratio. The phosphate-starved Scenedesmus cells, with an initial cell density of, 1 × 106 cells mL?1 shows 87% phosphate and 100 % nitrogen removal in 24 h. The normal Scenedesmus cells need approximately 48 h to trim down the nutrients from wastewater up to this extent. Other microalgae, Ankistrodesmus, growth pattern was not affected due to phosphate starvation. The cells of Ankistrodesmus was able to reduce 71% phosphate and 73% nitrogen within 24 h, with an initial cell density of, 1 × 106 cells mL?1.  相似文献   
47.
A variety of 1,3‐dihydro‐2H‐1,4‐benzodiazepin‐2‐one azomethines and 1,3‐dihydro‐2H‐1,4‐benzodiazepin‐2‐one benzamide were prepared, characterized and evaluated for the anticonvulsant activity in the rat using picrotoxin‐induced seizure model. The prepared 1,3‐dihydro‐2H‐1,4‐benzodiazepin‐2‐one azomethine derivatives emerged potentially anticonvulsant molecular scaffolds exemplified by compounds, 7‐{(E)‐[(4‐nitrophenyl)methylidene]amino}‐5‐phenyl‐1,3‐dihydro‐2H‐1,4‐benzodiazepin‐2‐one, 7‐[(E)‐{[4‐(dimethylamino)phenyl]methylidene}amino]‐5‐phenyl‐1,3‐dihydro‐2H‐1,4‐benzodiazepin‐2‐one, 7‐{(E)‐[(4‐bromo‐2,6‐difluorophenyl)methylidene]amino}‐5‐phenyl‐1,3‐dihydro‐2H‐1,4‐benzodiazepin‐2‐one and 7‐[(E)‐{[3‐(4‐fluorophenyl)‐1‐phenyl‐1H‐pyrazol‐4‐yl]methylidene}amino]‐5‐phenyl‐1,3‐dihydro‐2H‐1,4‐benzodiazepin‐2‐one. All these four compounds have shown substantial decrease in the wet dog shake numbers and grade of convulsions with respect to the standard drug diazepam. The most active compound, 7‐[(E)‐{[4‐(dimethylamino)phenyl]methylidene}amino]‐5‐phenyl‐1,3‐dihydro‐2H‐1,4‐benzodiazepin‐2‐one, exhibited 74 % protection against convulsion which was higher than the standard drug diazepam. Furthermore, to identify the binding mode of the interaction amongst the target analogs and binding site of the benzodiazepine receptor, molecular docking study and molecular dynamic simulation were carried out. Additionally, in silico pharmacokinetic and toxicity predictions of target compounds were carried out using AdmetSAR tool. Results of ADMET studies suggest that the pharmacokinetic parameters of all the target compounds were within the acceptable range to become a potential drug candidate as antiepileptic agents.  相似文献   
48.
To examine the effect of novelty in food selection by fishes, goldfish were trained by feeding them on red or green food pellets. Individual fish and fish in shoals of two, three, and five were then given a choice between equal numbers of familiar pellets and novel (yellow) pellets. In experimental groups, the yellow pellets were soaked in 15% quinine hydrochloride to make them unpalatable. Fish were next presented with equal numbers of familiar and a second novel pellet. It was expected that fish would generalize from their experience with the unpalatable pellets and demonstrate avoidance to sampling a second novel food item. However, as groups, neither controls nor experimentals were reluctant to sample the second novel pellets. Also, fish did not eat significantly more familiar than novel pellets when both were palatable. A third set of experiments examined food preference transitivity in which each pellet type was presented alone and in three pair-wise combinations to individual fish. Although red and yellow pellets were preferred over green, they were preferred equally, indicating an absence of transitivity in pellet choice and, perhaps, a “preference” for a mixture of red and yellow pellets.  相似文献   
49.
Abstract RasG protein levels in dormant and germinating spores of Dictyostelium discoideum strains JC1 and SG1 were estimated by Western blotting. Ras Glevels were very low in dormant spores and remained low during the lag period, regardless of whether spores were heat activated or treated with autoactivator during the early stages of spore germination. RasG levels increased late during spore swelling just prior to the emergence stage of germination. These data are consistent with a requirement for RasG during vegetative growth.  相似文献   
50.
Mutations in alpha-synuclein, Parkin, and UCH-L1 cause heritable forms of Parkinson disease. Unlike alpha-synuclein, for which no precise biochemical function has been elucidated, Parkin functions as a ubiquitin E3 ligase, and UCH-L1 is a deubiquitinating enzyme. The E3 ligase activity of Parkin in Parkinson disease is poorly understood and is further obscured by the fact that multiubiquitin chains can be formed through distinct types of linkages that regulate diverse cellular processes. For instance, ubiquitin lysine 48-linked multiubiquitin chains target substrates to the proteasome, whereas ubiquitin lysine 63-linked chains control ribosome function, protein sorting and trafficking, and endocytosis of membrane proteins. It is notable in this regard that ubiquitin lysine 63-linked chains promote the degradation of membrane proteins by the lysosome. Because both Parkin and alpha-synuclein can regulate the activity of the dopamine transporter, we investigated whether they influenced ubiquitin lysine 63-linked chain assembly. These studies revealed novel biochemical activities for both Parkin and alpha-synuclein. We determined that Parkin functions with UbcH13/Uev1a, a dimeric ubiquitin-conjugating enzyme, to assemble ubiquitin lysine 63-linked chains. Our results and the results of others indicate that Parkin can promote both lysine 48- and lysine 63-linked ubiquitin chains. alpha-Synuclein also stimulated the assembly of lysine 63-linked ubiquitin chains. Because UCH-L1, a ubiquitin hydrolase, was recently reported to form lysine 63-linked conjugates, it is evident that three proteins that are genetically linked to Parkinson disease can contribute to lysine 63 multiubiquitin chain formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号