首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1449篇
  免费   151篇
  2023年   10篇
  2022年   20篇
  2021年   32篇
  2020年   22篇
  2019年   23篇
  2018年   25篇
  2017年   32篇
  2016年   57篇
  2015年   89篇
  2014年   107篇
  2013年   103篇
  2012年   136篇
  2011年   108篇
  2010年   76篇
  2009年   55篇
  2008年   96篇
  2007年   91篇
  2006年   77篇
  2005年   61篇
  2004年   58篇
  2003年   44篇
  2002年   58篇
  2001年   16篇
  2000年   7篇
  1999年   14篇
  1998年   12篇
  1997年   17篇
  1996年   13篇
  1995年   17篇
  1994年   17篇
  1993年   13篇
  1992年   15篇
  1991年   10篇
  1990年   6篇
  1989年   7篇
  1988年   12篇
  1987年   4篇
  1986年   2篇
  1985年   5篇
  1984年   5篇
  1983年   2篇
  1982年   2篇
  1980年   6篇
  1979年   5篇
  1978年   2篇
  1976年   3篇
  1974年   2篇
  1973年   3篇
  1972年   1篇
  1963年   1篇
排序方式: 共有1600条查询结果,搜索用时 659 毫秒
961.
Genetic differences in seed longevity of various Arabidopsis mutants   总被引:5,自引:0,他引:5  
Seeds gradually lose their viability during dry storage. The damage that occurs at the biochemical level can alter the seed physiological status and is affected by the storage conditions of the seeds. Although these environmental conditions controlling loss of viability have been investigated frequently, little information is available on the genetics of seed longevity. Using Arabidopsis mutants in defined developmental or biochemical pathways such as those affected in seed coat composition, seed dormancy, hormone function and control of oxidative stress, we tried to gain insight into the genes and mechanisms controlling viability of stored seeds. Mutations like abscisic acid insensitive3 ( abi3 ) as well as abscisic acid deficient1 ( aba1 ) show reduced longevity, which may be partially related to the seed dormancy phenotype of these mutants. Mutants with seed coat alterations, especially aberrant tests shape ( ats ), showed a stronger reduction in germination percentage after storage, indicating the importance of a 'functional' seed coat for seed longevity. A specific emphasis was placed on mutants affected in dealing with Reactive Oxygen Species (ROS). Because several pathways are involved in protection against ROS and because gene redundancy is a common feature in Arabidopsis , 'double' mutants were generated. These 'double' mutants and the corresponding single mutants were subjected to a controlled deterioration test (CDT) and a germination assay on hydrogen peroxide (H2O2) after prolonged storage at two relative humidities. CDT and germination on H2O2 affected all genotypes, although it appears that other effects like genetic background are more important than the deficiencies in the ROS scavenging pathway. Explanations for this limited effect of mutations affecting ROS scavenging are discussed.  相似文献   
962.
963.
Background  To compare immune responses following neoadjuvant chemoradiation therapy in combination with hyperthermia plus surgery to those induced by surgery alone in patients with oesophageal cancer. Methods  Thirty-two patients with histopathologically proven oesophageal cancer, scheduled for potentially curative transhiatal or transthoracic oesophagectomy with (neo, n = 20) or without (control, n = 12) neoadjuvant thermochemoradiation therapy (ThCR) were included. Peripheral blood samples were obtained before ThCR, after 2 weeks of ThCR, 1 day before surgery, on postoperative days 1, 3, 7, and 6 weeks after surgery, for white blood cell counts, lymphocyte subsets and T helper type 1 (Th1) and type 2 (Th2) lymphocyte responses. Results  Neo patients showed a significant decrease in granulocytes and lymphocyte subsets, and T cell cytokines after 2 weeks of ThCR. Only CD8+ (cytotoxic) T cells recovered after ThCR to reach normal levels prior to surgery. In contrast, CD4+ T (helper) cells, and NK- and B cells in neo patients did not recover prior to surgery (all P < 0.05). Oesophagectomy induced a significant increase in granulocytes and a decrease in lymphocytes (and subsets). Only those subsets that had not recovered after ThCR (CD4+ T cells, NK and B cells but not CD8+ T cells), were significantly lower (all P < 0.05) during the entire postoperative study period. Postoperatively, the stimulated cytokine production capacity of Th1 and Th2 cells, corrected for number of T cells, was not significantly different between the groups. Conclusion  Neoadjuvant thermochemoradiation for oesophageal cancer caused significant disturbances of host cellular immunity with reduced T, NK and B cell counts, and differential recovery of cytotoxic and helper T cells leading to prolonged T cell imbalance that extends beyond the time of surgery. The functional and anti-tumour consequences of this immunodisturbance need further investigation, as recovery of T helper cytokine production towards surgery was less impaired than T helper cell counts.  相似文献   
964.
PolycombGroup (PcG) proteins are epigenetic silencers involved in maintaining cellular identity, and their deregulation can result in cancer [1]. Mice without the PcG gene Bmi1 are runted and suffer from progressive loss of hematopoietic and neural stem cells [2-4]. Here, we assess the effects of Bmi1 on stem cells and differentiation of an epithelial tissue in vivo. We chose the mammary gland because it allows limiting dilution transplantations [5, 6] and because Bmi1 is overexpressed in breast cancer [7, 8]. Our analyses show that Bmi1 is expressed in all cells of the mouse mammary gland and is especially high in luminal cells. Loss of Bmi1 results in a severe mammary-epithelium growth defect, which can be rescued by codeletion of the Ink4a/Arf locus or pregnancy. Even though mammary stem cells are present in the absence of Bmi1, their activity is reduced, and this is only partially due to Ink4a/Arf expression. Interestingly, loss of Bmi1 causes premature lobuloalveolar differentiation, whereas overexpression of Bmi1 inhibits lobuloalveolar differentiation induced by pregnancy hormones. Because Bmi1 affects not only mammary stem cells but also more committed cells, our data warrant a more detailed analysis of the different roles of Bmi1 in breast-cancer etiology.  相似文献   
965.
Both leaf production and leaf expansion are tightly linked to cell expansion and cell division, but the functional relationships between all these variables are not clearly established. To get insight into these relationships, a quantitative genetic analysis was performed in 118 recombinant inbred lines derived from a cross between the Landsberg erecta and Antwerp accessions and was combined with a structural equation modeling approach. Main effects and epistatic interactions at the quantitative trait locus (QTL) level were detected for rosette area, rosette leaf number, leaf 6 area, epidermal cell area and number. A QTL at ERECTA marker (ER) controlled cell expansion and cell division, in interaction with two other QTLs at SNP295 and SNP21 markers. Moreover, both the screening for marker association involved in the variation of the relationships between leaf growth variables and the test of alternative functional models by structural equation modeling revealed that the allelic value at ER controlled epidermal cell area and epidermal cell number in a leaf. These effects are driven both by a whole plant mechanism associated with leaf production and by a single leaf mechanism associated with leaf expansion. The complex effects of the QTL at ER were validated in selected heterogeneous inbred families. The ERECTA gene, which is mutated in the Landsberg erecta parental line, was found to be a putative candidate responsible for these mapped effects by phenotyping mutants of this gene at the cellular level. Together, these results give insight into the complex determination of leaf epidermal cell number and area.  相似文献   
966.
967.
In a companion paper (Lof et al., in Bull. Math. Biol., 2008), we describe a spatio-temporal model for insect behavior. This model includes chemical information for finding resources and conspecifics. As a model species, we used Drosophila melanogaster, because its behavior is documented comparatively well. We divide a population of Drosophila into three states: moving, searching, and settled. Our model describes the number of flies in each state, together with the concentrations of food odor and aggregation pheromone, in time and in two spatial dimensions. Thus, the model consists of 5 spatio-temporal dependent variables, together with their constituting relations. Although we tried to use the simplest submodels for the separate variables, the parameterization of the spatial model turned out to be quite difficult, even for this well-studied species. In the first part of this paper, we discuss the relevant results from the literature, and their possible implications for the parameterization of our model. Here, we focus on three essential aspects of modeling insect behavior. First, there is the fundamental discrepancy between the (lumped) measured behavioral properties (i.e., fruit fly displacements) and the (detailed) properties of the underlying mechanisms (i.e., dispersivity, sensory perception, and state transition) that are adopted as explanation. Detailed quantitative studies on insect behavior when reacting to infochemicals are scarce. Some information on dispersal can be used, but quantitative data on the transition between the three states could not be found. Second, a dose-response relation as used in human perception research is not available for the response of the insects to infochemicals; the behavioral response relations are known mostly in a qualitative manner, and the quantitative information that is available does not depend on infochemical concentration. We show how a commonly used Michaelis–Menten type dose-response relation (incorporating a saturation effect) can be adapted to the use of two different but interrelated stimuli (food odors and aggregation pheromone). Although we use all available information for its parameterization, this model is still overparameterized. Third, the spatio-temporal dispersion of infochemicals is hard to model: Modeling turbulent dispersal on a length scale of 10 m is notoriously difficult. Moreover, we have to reduce this inherently three-dimensional physical process to two dimensions in order to fit in the two-dimensional model for the insects. We investigate the consequences of this dimension reduction, and we demonstrate that it seriously affects the parameterization of the model for the infochemicals. In the second part of this paper, we present the results of a sensitivity analysis. This sensitivity analysis can be used in two manners: firstly, it tells us how general the simulation results are if variations in the parameters are allowed, and secondly, we can use it to infer which parameters need more precise quantification than is available now. It turns out that the short term outcome of our model is most sensitive to the food odor production rate and the fruit fly dispersivity. For the other parameters, the model is quite robust. The dependence of the model outcome with respect to the qualitative model choices cannot be investigated with a parameter sensitivity analysis. We conclude by suggesting some experimental setups that may contribute to answering this question.  相似文献   
968.
IL-17A is a T cell-specific cytokine that is involved in chronic inflammations, such as Mycobacterium infection, Crohn's disease, rheumatoid arthritis and multiple sclerosis. Mouse models have explained the molecular basis of IL-17A production and have shown that IL-17A has a positive effect not only on granuloma formation and neurodegeneration through unknown mechanisms, but also on bone resorption through Receptor activator of NF-kappaB ligand (RANKL) induction in osteoblasts. Langerhans cell histiocytosis (LCH) is a rare disease of unknown etiology, lacking an animal model, that cumulates symptoms that are found separately in various IL-17A-related diseases, such as aggressive chronic granuloma formation, bone resorption and soft tissue lesions with occasional neurodegeneration. We examined IL-17A in the context of LCH and found that there were high serum levels of IL-17A during active LCH and unexpected IL-17A synthesis by dendritic cells (DCs), the major cell type in LCH lesions. We also found an IL-17A-dependent pathway for DC fusion, which was highly potentiated by IFN-gamma and led to giant cells expressing three major tissue-destructive enzymes: tartrate resistant acidic phosphatase and matrix metalloproteinases 9 and 12. IFN-gamma expression has been previously documented in LCH and observed in IL-17A-related diseases. Notably, serum IL-17A-dependent fusion activity correlates with LCH activity. Thus, IL-17A and IL-17A-stimulated DCs represent targets that may have clinical value in the treatment of LCH and other IL-17A-related inflammatory disorders.  相似文献   
969.
Green fluorescent protein (GFP) is widely used as a marker to identify transfected cells either by fluorescence microscopy or flow cytometry. However, cell cycle analysis with propidium iodide typically employs ethanol for cell permeabilization. During this treatment, soluble GFPs generally leak out of cells, probably due to their small size. We have now significantly improved cellular retention by creating an in-frame fusion of two GFP DNA sequences, thereby generating a double-sized GFP (TwinGFP, 57 kDa). Permeabilized HeLa cells transfected with pTwinGFP showed a strong green fluorescent signal localized throughout the cells that could easily be detected by fluorescence microscopy and flow cytometry, in contrast to cells transfected with a standard single GFP construct. The experiment indicates that protein size constitutes the major determinant of the loss of fluorescence in permeabilized cells. As a proof of principle, pTwinGFP was cotransfected with the p53 tumor suppressor gene into HeLa cells, and cells transiently expressing p53 could be identified and phenotypically characterized by flow cytometry.  相似文献   
970.
Worldwide, river fragmentation is primarily responsible for the decline of populations of migrating fish. In particular, anadromous fish species, which necessarily migrate to fresh water to reproduce, are endangered since many are no longer able to reach their natural spawning sites. In addition, pollution of rivers effectively prevents upstream or downstream movements and blocks access to spawning grounds. This article investigates how poor water quality interferes with the life history cycle of twaite shad Alosa fallax fallax (Lacépède, 1803), an anadromous clupeid fish, in the watershed of River Scheldt, a heavily impacted environment in West Europe. We used two models based on known ecological and environmental information to explain past and present twaite shad distribution within the watershed and to make inferences about a future population recovery and juvenile habitat value. We demonstrated that historical spawning areas satisfy water quality conditions necessary to support spawning and successful development of early life history stages of the twaite shad. However, poor water quality conditions just upstream the freshwater–saltwater boundary still act as an effective migration barrier for upstream movement. As a consequence, spawning grounds are inaccessible and the population is dominated by seasonal adults occurring in the lower estuarine part of the watershed. This article provides testable and diagnostic information to the watershed management in that it identifies habitat and water quality requirements needed to support the expected recovery of an endangered anadromous fish population. Guest editors: S. Dufour, E. Prévost, E. Rochard & P. Williot Fish and diadromy in Europe (ecology, management, conservation)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号