首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22254篇
  免费   1525篇
  国内免费   993篇
  24772篇
  2024年   54篇
  2023年   297篇
  2022年   633篇
  2021年   1020篇
  2020年   676篇
  2019年   903篇
  2018年   895篇
  2017年   680篇
  2016年   959篇
  2015年   1340篇
  2014年   1518篇
  2013年   1763篇
  2012年   1955篇
  2011年   1829篇
  2010年   1024篇
  2009年   909篇
  2008年   1018篇
  2007年   928篇
  2006年   847篇
  2005年   724篇
  2004年   632篇
  2003年   528篇
  2002年   476篇
  2001年   310篇
  2000年   321篇
  1999年   283篇
  1998年   174篇
  1997年   162篇
  1996年   181篇
  1995年   162篇
  1994年   136篇
  1993年   102篇
  1992年   151篇
  1991年   150篇
  1990年   124篇
  1989年   97篇
  1988年   98篇
  1987年   101篇
  1986年   71篇
  1985年   90篇
  1984年   50篇
  1983年   53篇
  1982年   27篇
  1981年   26篇
  1980年   24篇
  1979年   35篇
  1978年   28篇
  1977年   20篇
  1975年   29篇
  1974年   21篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
141.

Background

The bovine rumen maintains a diverse microbial community that serves to break down indigestible plant substrates. However, those bacteria specifically adapted to degrade cellulose, the major structural component of plant biomass, represent a fraction of the rumen microbiome. Previously, we proposed scaC as a candidate for phylotyping Ruminococcus flavefaciens, one of three major cellulolytic bacterial species isolated from the rumen. In the present report we examine the dynamics and diversity of scaC-types both within and between cattle temporally, following a dietary switch from corn-silage to grass-legume hay. These results were placed in the context of the overall bacterial population dynamics measured using the 16S rRNA.

Principal Findings

As many as 117 scaC-types were estimated, although just nineteen were detected in each of three rumens tested, and these collectively accounted for the majority of all types present. Variation in scaC populations was observed between cattle, between planktonic and fiber-associated fractions and temporally over the six-week survey, and appeared related to scaC phylogeny. However, by the sixth week no significant separation of scaC populations was seen between animals, suggesting enrichment of a constrained set of scaC-types. Comparing the amino-acid translation of each scaC-type revealed sequence variation within part of the predicted dockerin module but strong conservation in the N-terminus, where the cohesin module is located.

Conclusions

The R. flavefaciens species comprises a multiplicity of scaC-types in-vivo. Enrichment of particular scaC-types temporally, following a dietary switch, and between fractions along with the phylogenetic congruence suggests that functional differences exist between types. Observed differences in dockerin modules suggest at least part of the functional heterogeneity may be conferred by scaC. The polymorphic nature of scaC enables the relative distribution of R. flavefaciens strains to be examined and represents a gene-centric approach to investigating the intraspecific adaptation of an important specialist population.  相似文献   
142.
143.
144.
145.
In this study we investigated the hypothesis that a high-salt diet to hyperinsulinemic rats might impair antioxidant defense owing to its involvement in the activation of sodium reabsorption to lead to higher oxidative stress. Rats were fed a standard (CON), a high-salt (HS), or a high-fructose (HF) diet for 10 weeks after which, 50% of the animals belonging to the HF group were switched to a regimen of high-fructose and high-salt diet (HFS) for 10 more weeks, while the other groups were fed with their respective diets. Animals were then euthanized and their blood and liver were examined. Fasting plasma glucose was found to be significantly higher (approximately 50%) in fructose-fed rats than in the control and HS rats, whereas fat liver also differed in these animals, producing steatosis. Feeding fructose-fed rats with the high-salt diet triggered hyperinsulinemia and lowered insulin sensitivity, which led to increased levels of serum sodium compared to the HS group. This resulted in membrane perturbation, which in the presence of steatosis potentially enhanced hepatic lipid peroxidation, thereby decreasing the level of antioxidant defenses, as shown by GSH/GSSG ratio (HFS rats, 7.098±2.1 versus CON rats, 13.2±6.1) and superoxide dismutase (HFS rats, 2.1±0.05 versus CON rats, 2.3±0.1%), and catalase (HFS rats, 526.6±88.6 versus CON rats, 745.8±228.7 U/mg ptn) activities. Our results indicate that consumption of a salt-rich diet by insulin-resistant rats may lead to regulation of sodium reabsorption, worsening hepatic lipid peroxidation associated with impaired antioxidant defenses.  相似文献   
146.
Li T  Zhong J  Chen Y  Qiu X  Zhang T  Ma D  Han W 《Life sciences》2006,79(6):519-524
Chemokine-like factor 1 (CKLF1) is a cytokine with chemotactic effects on leukocytes and a functional ligand of CCR4. This cytokine is widely expressed and the level of expression is reported to be upregulated in asthma and rheumatoid arthritis (RA), disease conditions in which T lymphocytes are over-activated. In order to determine the expression profile of CKLF1 in activated T lymphocytes, we first employed a PCR-based method on human blood fractions cDNA panels and found that CKLF1 was upregulated in activated CD4+ and CD8+ cells, with no obvious changes in CD19+ cells. We further performed kinetic analyses of CKLF1 expression in phytohemagglutinin (PHA)-stimulated human peripheral blood lymphocytes (PBL) at both the mRNA and protein levels. In resting PBL, the constitutive expression of CKLF1 was low at mRNA level and barely detectable at the protein level; however, both were remarkably upregulated by PHA, appearing at 8h after PHA-stimulation and persisting up to 72h. These results suggest that CKLF1 may be involved in T lymphocyte activation and further study of CKLF1 function will prove valuable.  相似文献   
147.
Oxidative damage is an important mechanism in X-ray-induced cell death. Radiolysis of water molecules is a source of reactive oxygen species (ROS) that contribute to X-ray-induced cell death. In this study, we showed by ROS detection and a cell survival assay that NADPH oxidase has a very important role in X-ray-induced cell death. Under X-ray irradiation, the upregulation of the expression of NADPH oxidase membrane subunit gp91phox was dose-dependent. Meanwhile, the cytoplasmic subunit p47phox was translocated to the cell membrane and localized with p22phox and gp91phox to form reactive NADPH oxidase. Our data suggest, for the first time, that NADPH oxidase-mediated generation of ROS is an important contributor to X-ray-induced cell death. This suggests a new target for combined gene transfer and radiotherapy.  相似文献   
148.
149.
The metabolic cooperation in the ecosystem of Bacillus megaterium and Ketogulonicigenium vulgare was investigated by cultivating them spatially on a soft agar plate. We found that B. megaterium swarmed in a direction along the trace of K. vulgare on the agar plate. Metabolomics based on gas chromatography coupled with time-of-flight mass spectrometry (GC-TOF-MS) was employed to analyze the interaction mechanism between the two microorganisms. We found that the microorganisms interact by exchanging a number of metabolites. Both intracellular metabolism and cell-cell communication via metabolic cooperation were essential in determining the population dynamics of the ecosystem. The contents of amino acids and other nutritional compounds in K. vulgare were rather low in comparison to those in B. megaterium, but the levels of these compounds in the medium surrounding K. vulgare were fairly high, even higher than in fresh medium. Erythrose, erythritol, guanine, and inositol accumulated around B. megaterium were consumed by K. vulgare upon its migration. The oxidization products of K. vulgare, including 2-keto-gulonic acids (2KGA), were sharply increased. Upon coculturing of B. megaterium and K. vulgare, 2,6-dipicolinic acid (the biomarker of sporulation of B. megaterium), was remarkably increased compared with those in the monocultures. Therefore, the interactions between B. megaterium and K. vulgare were a synergistic combination of mutualism and antagonism. This paper is the first to systematically identify a symbiotic interaction mechanism via metabolites in the ecosystem established by two isolated colonies of B. megaterium and K. vulgare.  相似文献   
150.
The human endometrial carcinoma is one of the most common female malignancies, and there is an urgent requirement to explore new therapeutic strategies. There is accumulating evidence that microRNAs (miRNAs) can serve as potential diagnostic and prognostic biomarkers for various types of cancer, but the significance of miR-582-5p still remains largely unknown in the endometrial carcinoma. The aims of this study were to understand and identify the influence of miR-582-5p on the proliferation and apoptosis of human endometrial carcinoma and its relevant mechanism. First, quantitative real-time PCR (qRT-PCR) was used to detect miR-582-5p and AKT3 expression in human tissue samples and cells. Then, CyQuant assay and 2D colony assay were employed to evaluate cell proliferation. Western blotting was used to determine protein expression. Subsequently, the luciferase reporter assay was used to identify the target of miR-582-5p. Finally, Annexin V assay was used to detect cell apoptosis. We found that miR-582-5p expression was significantly decreased in human endometrial carcinoma tissues, and miR-582-5p upregulation in human endometrial carcinoma cells inhibit cell proliferation and promote apoptosis. Moreover, AKT3 was validated as a target of miR-582-5p and AKT3 expression was inversely correlated with miR-582-5p expression. Besides, AKT3 upregulation efficiently abrogates the effect of miR-582-5p on the cells. These results demonstrated that miR-582-5p regulates cell proliferation and apoptosis in human endometrial carcinoma via AKT3. Thus, miR-582-5p represents a potential therapeutic target in human endometrial carcinoma meriting further investigation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号