首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40259篇
  免费   2887篇
  国内免费   2269篇
  2024年   68篇
  2023年   487篇
  2022年   1090篇
  2021年   1972篇
  2020年   1334篇
  2019年   1712篇
  2018年   1628篇
  2017年   1248篇
  2016年   1772篇
  2015年   2512篇
  2014年   2886篇
  2013年   3152篇
  2012年   3620篇
  2011年   3276篇
  2010年   1927篇
  2009年   1682篇
  2008年   1913篇
  2007年   1664篇
  2006年   1532篇
  2005年   1288篇
  2004年   1134篇
  2003年   981篇
  2002年   872篇
  2001年   675篇
  2000年   655篇
  1999年   586篇
  1998年   377篇
  1997年   347篇
  1996年   350篇
  1995年   308篇
  1994年   246篇
  1993年   204篇
  1992年   284篇
  1991年   258篇
  1990年   219篇
  1989年   155篇
  1988年   143篇
  1987年   151篇
  1986年   94篇
  1985年   115篇
  1984年   65篇
  1983年   71篇
  1982年   31篇
  1981年   26篇
  1980年   28篇
  1979年   36篇
  1978年   29篇
  1977年   21篇
  1975年   29篇
  1974年   22篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.

Background

The Aerides–Vanda alliance is a complex group in the subtribe Aeridinae (subfamily Epidendroideae, Orchidaceae). Some phylogenetic systems of this alliance have been previously proposed based on molecular and morphological analyses. However, several taxonomic problems within this alliance as well as between it and its allies remain unsolved.

Methodology/Principal Findings

We utilized ITS and five plastid DNA regions in this phylogenetic analysis. Consensus trees strongly indicate that the Aerides–Vanda alliance is monophyletic, and the 14 genera of this alliance can be grouped into the following clades with 14 subclades: 1. Aerides, comprising two subclades: Rhynchostylis and Aerides; 2. Ascocentropsis; 3. Papilionanthe; 4. Vanda, comprising five subclades: Neofinetia, Christensonia, Seidenfadenia, Ascocentrum, and Vanda–Trudelia, in which Vanda and Trudelia form a subclade; 5. Tsiorchis, comprising three subclades: Chenorchis, Tsiorchis, and two species of Ascocentrum; 6. Paraholcoglossum; and 7. Holcoglossum. Among the 14 genera, only Ascocentrum is triphyletic: two species of the Ascocentrum subclade, an independent subclade Ascocentrum subclade in the Tsiorchis clade; the Ascocentrum subclade in the Vanda clade; and one species in the Holcoglossum clade. The Vanda and Trudelia species belong to the same subclade. The molecular conclusion is consistent with their morphological characteristics.

Conclusions

We elucidate the relationship among the 14 genera of the Aerides–Vanda alliance. Our phylogenetic results reveal that the Aerides–Vanda alliance is monophyletic, but it can be divided into 14 genera. The data prove that Ascocentrum is triphyletic. Plants with elongate-terete leaves and small flowers should be treated as a new genus, Pendulorchis. Saccolabium himalaicum (Ascocentrum himalaicum) should be transferred to Pendulorchis. Ascocentrum pumilum, endemic to Taiwan, should be transferred to Holcoglossum. A new combination, Holcoglossum pumilum, was also established. Trudelia should not be recognized as an independent genus. Two new species, Pendulorchis gaoligongensis and Holcoglossum singchianum, were described as well.  相似文献   
992.

Background

Many studies have found extreme temperature can increase the risk of mortality. However, it is not clear whether extreme diurnal temperature range (DTR) is associated with daily disease-specific mortality, and how season might modify any association.

Objectives

To better understand the acute effect of DTR on mortality and identify whether season is a modifier of the DTR effect.

Methods

The distributed lag nonlinear model (DLNM) was applied to assess the non-linear and delayed effects of DTR on deaths (non-accidental mortality (NAD), cardiovascular disease (CVD), respiratory disease (RD) and cerebrovascular disease (CBD)) in the full year, the cold season and the warm season.

Results

A non-linear relationship was consistently found between extreme DTR and mortality. Immediate effects of extreme low DTR on all types of mortality were stronger than those of extreme high DTR in the full year. The cumulative effects of extreme DTRs increased with the increment of lag days for all types of mortality in cold season, and they were greater for extreme high DTRs than those of extreme low DTRs. In hot season, the cumulative effects for extreme low DTRs increased with the increment of lag days, but for extreme high DTR they reached maxima at a lag of 13 days for all types of mortality except for CBD(at lag6 days), and then decreased.

Conclusions

Our findings suggest that extreme DTR is an independent risk factor of daily mortality, and season is a modifier of the association of DTR with daily mortality.  相似文献   
993.

Background

Dexmedetomidine (DEX) has been used under perioperative settings as an adjuvant to enhance the analgesic property of local anesthetics by some anesthesiologists. However, the analgesic mechanisms and neurotoxicity of DEX were poorly understood. This study examined the effect of DEX alone on inflammatory pain, and it also examined the underlying molecular mechanisms of DEX in the spinal cord. Furthermore, in vivo and in vitro experiments were performed to investigate the neurotoxicity of DEX on the spinal cord and cortical neurons.

Methods

This study used adult, male Kunming mice. In the acute inflammatory model, the left hind-paws of mice were intradermally injected with pH 5.0 PBS while chronic constrictive injury (CCI) of the sciatic nerve was used to duplicate the neuropathic pain condition. Thermal paw withdrawal latency and mechanical paw withdrawal threshold were tested with a radiant heat test and the Von Frey method, respectively. Locomotor activity and motor coordination were evaluated using the inverted mesh test. Western blotting examined spinal ERK1/2, p-ERK1/2, caspase-3 and β-actin expressions, while spinal c-Fos protein expression was realized with immunohistochemical staining. Hematoxylin eosin (HE) staining was used to examine the pathological impacts of intrathecal DEX on the spinal cord. DAPI (4′,6-diamidino-2-phenylindole) staining was used to observe cell death under an immunofluorescence microscope.

Results

Intra-plantar pH 5.0 PBS-induced acute pain required spinal ERK1/2 activation. Inhibition of spinal ERK1/2 signaling by intrathecal injection of DEX displayed a robust analgesia, via a α2-receptor dependent manner. The analgesic properties of DEX were validated in CCI mice. In vivo studies showed that intrathecal DEX has no significant pathological impacts on the spinal cord, and in vitro experiments indicated that DEX has potential protective effects of lidocaine-induced neural cell death.

Conclusion

Intrathecal injection of DEX alone or as an adjuvant might be potential for pain relief.  相似文献   
994.
Little is known about the role of the host defensive protein short palate, lung and nasal epithelium clone 1 (SPLUNC1) in the carcinogenesis of nasopharyngeal carcinoma (NPC). Here we report that SPLUNC1 plays a role at a very early stage of NPC carcinogenesis. SPLUNC1 regulates NPC cell proliferation, differentiation and apoptosis through miR-141, which in turn regulates PTEN and p27 expression. This signaling axis is negatively regulated by the EBV-coded gene LMP1. Therefore we propose that SPLUNC1 suppresses NPC tumor formation and its inhibition by LMP1 provides a route for NPC tumorigenesis.  相似文献   
995.
TRPML3 and TRPV5 are members of the mucolipin (TRPML) and TRPV subfamilies of transient receptor potential (TRP) cation channels. Based on sequence similarities of the pore forming regions and on structure-function evidence, we hypothesized that the pore forming domains of TRPML and TRPV5/TRPV6 channels have similarities that indicate possible functional interactions between these TRP channel subfamilies. Here we show that TRPML3 and TRPV5 associate to form a novel heteromeric ion channel. This novel conductance is detectable under conditions that do not activate either TRPML3 or TRPV5. It has pharmacological similarity with TRPML3 and requires functional TRPML3 as well as functional TRPV5. Single channel analyses revealed that TRPML3 and TRPV5 heteromers have different features than the respective homomers, and furthermore, that they occur in potentially distinct stoichiometric configurations. Based on overlapping expression of TRPML3 and TRPV5 in the kidney and the inner ear, we propose that TRPML3 and TRPV5 heteromers could have a biological function in these organs.  相似文献   
996.
In this paper, a Bregman iteration based total variation image restoration algorithm is proposed. Based on the Bregman iteration, the algorithm splits the original total variation problem into sub-problems that are easy to solve. Moreover, non-local regularization is introduced into the proposed algorithm, and a method to choose the non-local filter parameter locally and adaptively is proposed. Experiment results show that the proposed algorithms outperform some other regularization methods.  相似文献   
997.
miRNA biogenesis enzyme Drosha cleaves double-stranded primary miRNA by interacting with double-stranded RNA binding protein DGCR8 and processes primary miRNA into precursor miRNA to participate in the miRNA biogenesis pathway. The role of Drosha in vascular smooth muscle cells (VSMCs) has not been well addressed. We generated Drosha conditional knockout (cKO) mice by crossing VSMC-specific Cre mice, SM22-Cre, with Drosha loxp/loxp mice. Disruption of Drosha in VSMCs resulted in embryonic lethality at E14.5 with severe liver hemorrhage in mutant embryos. No obvious developmental delay was observed in Drosha cKO embryos. The vascular structure was absent in the yolk sac of Drosha homozygotes at E14.5. Loss of Drosha reduced VSMC proliferation in vitro and in vivo. The VSMC differentiation marker genes, including αSMA, SM22, and CNN1, and endothelial cell marker CD31 were significantly downregulated in Drosha cKO mice compared to controls. ERK1/2 mitogen-activated protein kinase and the phosphatidylinositol 3-kinase/AKT were attenuated in VSMCs in vitro and in vivo. Disruption of Drosha in VSMCs of mice leads to the dysregulation of miRNA expression. Using bioinformatics approach, the interactions between dysregulated miRNAs and their target genes were analyzed. Our data demonstrated that Drosha is required for VSMC survival by targeting multiple signaling pathways.  相似文献   
998.

Background

Lack of clear risk factor identification is the main reason for the persistence of brucellosis infection in the Chinese population, and there has been little assessment of the factors contributing to Brucella contamination of raw whole milk. The purpose of this study was to identify risk factors affecting Brucella contamination of raw milk, and to evaluate effective measures for disease reduction in order to determine preventive strategies.

Methods and Findings

A nationwide survey was conducted and samples were obtained from 5211 cows corresponding to 25 sampling locations throughout 15 provinces in China. The prevalence of Brucella in the raw milk samples averaged 1.07% over the 15 Chinese provinces, while the prevalence of positive areas within these regions ranged from 0.23–3.84% among the nine provinces with positive samples. The survey examined factors that supposedly influence Brucella contamination of raw whole milk, such as management style, herd size, abortion rate, hygiene and disease control practices. A binary logistic regression analysis was carried out to determine the association between risk factors for Brucella and contamination of milk samples. Furthermore, a relative effect decomposition study was conducted to determine effective strategies for reducing the risk of Brucella contamination of raw whole milk. Our data indicate that disease prevention and control measures, abortion rate, and animal polyculture are the most important risk factors. Meanwhile, culling after quarantine was identified as an effective protective measure in the current Chinese dairy situation.

Conclusions

These results indicate that, although there is a low risk of contamination of milk with Brucella nationwide in China, there are individual regions where contamination is a significant problem. Controlling three factors–culling after quarantine, maintaining a low abortion rate, and avoiding mixing groups of cattle and small ruminants–could effectively reduce the risk of Brucella contamination of raw whole milk.  相似文献   
999.

Background

Hematopoietic stem cell (HSC) regulation is highly dependent on interactions with the marrow microenvironment, of which osteogenic cells play a crucial role. While evidence is accumulating for an important role of intrinsic miR-17 in regulating HSCs and HPCs, whether miR-17 signaling pathways are also necessary in the cell-extrinsic control of hematopoiesis hereto remains poorly understood.

Methodology/Principal Findings

Using the immortalized clone with the characteristics of osteoblasts, FBMOB-hTERT, in vitro expansion, long-term culture initiating cell (LTC-IC) and non-obese diabetic/severe combined immunodeficient disease (NOD/SCID) mice repopulating cell (SRC) assay revealed that the ectopic expression of miR-17 partly promoted the ability of FBMOB-hTERT to support human cord blood (CB) CD34+ cell expansion and maintain their multipotency. It also seemed that osteoblastic miR-17 was prone to cause a specific expansion of the erythroid lineage. Conversely, deficient expression of miR-17 partly inhibited the hematopoietic supporting ability of FBMOB-hTERT. We further identified that HIF-1α is responsible for, at least in part, the promoted hematopoietic supporting ability of FBMOB-hTERT caused by miR-17. HIF-1α expression is markedly enhanced in miR-17 overexpressed FBMOB-hTERT upon interaction with CB CD34+ cells compared to other niche associated factors. More interestingly, the specific erythroid lineage expansion of CB CD34+ cells caused by osteoblastic miR-17 was abrogated by HIF-1α knock down.

Conclusion/Significance

Our data demonstrated that CB CD34+ cell expansion can be partly promoted by osteoblastic miR-17, and in particular, ectopic miR-17 can cause a specific expansion of the erythroid lineage through augmenting HIF-1α in osteoblasts.  相似文献   
1000.
CD6 has recently been identified and validated as risk gene for multiple sclerosis (MS), based on the association of a single nucleotide polymorphism (SNP), rs17824933, located in intron 1. CD6 is a cell surface scavenger receptor involved in T-cell activation and proliferation, as well as in thymocyte differentiation. In this study, we performed a haptag SNP screen of the CD6 gene locus using a total of thirteen tagging SNPs, of which three were non-synonymous SNPs, and replicated the recently reported GWAS SNP rs650258 in a Spanish-Basque collection of 814 controls and 823 cases. Validation of the six most strongly associated SNPs was performed in an independent collection of 2265 MS patients and 2600 healthy controls. We identified association of haplotypes composed of two non-synonymous SNPs [rs11230563 (R225W) and rs2074225 (A257V)] in the 2nd SRCR domain with susceptibility to MS (P max(T) permutation = 1×10−4). The effect of these haplotypes on CD6 surface expression and cytokine secretion was also tested. The analysis showed significantly different CD6 expression patterns in the distinct cell subsets, i.e. – CD4+ naïve cells, P = 0.0001; CD8+ naïve cells, P<0.0001; CD4+ and CD8+ central memory cells, P = 0.01 and 0.05, respectively; and natural killer T (NKT) cells, P = 0.02; with the protective haplotype (RA) showing higher expression of CD6. However, no significant changes were observed in natural killer (NK) cells, effector memory and terminally differentiated effector memory T cells. Our findings reveal that this new MS-associated CD6 risk haplotype significantly modifies expression of CD6 on CD4+ and CD8+ T cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号