首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40472篇
  免费   2886篇
  国内免费   2271篇
  2024年   99篇
  2023年   558篇
  2022年   1188篇
  2021年   1985篇
  2020年   1335篇
  2019年   1712篇
  2018年   1628篇
  2017年   1248篇
  2016年   1772篇
  2015年   2512篇
  2014年   2886篇
  2013年   3152篇
  2012年   3620篇
  2011年   3276篇
  2010年   1927篇
  2009年   1682篇
  2008年   1913篇
  2007年   1664篇
  2006年   1532篇
  2005年   1288篇
  2004年   1134篇
  2003年   981篇
  2002年   872篇
  2001年   675篇
  2000年   655篇
  1999年   586篇
  1998年   377篇
  1997年   347篇
  1996年   350篇
  1995年   308篇
  1994年   246篇
  1993年   204篇
  1992年   284篇
  1991年   258篇
  1990年   219篇
  1989年   155篇
  1988年   143篇
  1987年   151篇
  1986年   94篇
  1985年   115篇
  1984年   65篇
  1983年   71篇
  1982年   31篇
  1981年   26篇
  1980年   28篇
  1979年   36篇
  1978年   29篇
  1977年   21篇
  1975年   29篇
  1974年   22篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
The structural, optical and magnetic properties of Cu, Ag, Au-doped Si7 Clusters have been systematically investigated using density functional theory calculations. The global optimized structures of Cu, Ag, Au-doped Si clusters are predicted to have a lower HOMO–LUMO gap and higher magnetic moment. M-doping (M?=?Cu, Ag, Au) in Si cluster widens a range of adsorption wavelength, especially Au-doping. The characteristics in electronic density of states (DOSs) show that C5v-Si6Cu has a big asymmetrical spin-up and spin-down. The average atomic moment is 0.428 mμB per atom for the Si6Cu cluster with C5v symmetry, while the average paramagnetic moment is 0.143 mμB per atom for other M-doped (M?=?Cu, Ag, Au) Si7 clusters.  相似文献   
942.
Calcium borohydride is a potential candidate for onboard hydrogen storage because it has a high gravimetric capacity (11.5 wt.%) and a high volumetric hydrogen content (~130 kg m?3). Unfortunately, calcium borohydride suffers from the drawback of having very strongly bound hydrogen. In this study, Ca(BH4)2 was predicted to form a destabilized system when it was mixed with LiBH4, NaBH4, or KBH4. The release of hydrogen from Ca(BH4)2 was predicted to proceed via two competing reaction pathways (leading to CaB6 and CaH2 or CaB12H12 and CaH2) that were found to have almost equal free energies. Using a set of recently developed theoretical methods derived from first principles, we predicted five new hydrogen storage reactions that are among the most attractive of those presently known. These combine high gravimetric densities (>6.0 wt.% H2) with have low enthalpies [approximately 35 kJ/(mol?1 H2)] and are thermodynamically reversible at low pressure within the target window for onboard storage that is actively being considered for hydrogen storage applications. Thus, the first-principles theoretical design of new materials for energy storage in future research appears to be possible.
Figure
Calculated van’t Hoff plot for reactions (10-24*) listed in the Ca-M(Li, Na, K)-B-H system (Tables 24). The region within the rectangular box corresponds to desirable temperatures and pressures for on-board hydrogen storage PH2 = 1-700 bar and T = 233 to +355 K  相似文献   
943.
The possibility of a new endohedral fullerene with a trapped aluminum carbide cluster, Al4C @C80-I h , was theoretical investigated. The geometries and electronic properties of it were investigated using density functional theory methods. The Al4C unit formally transfers six electrons to the C80 cage which induces stabilization of Al4C@C80. A favorable binding energy, relatively large HOMO-LUMO gap, electron affinities and ionization potentials suggested the Al4C@C80 is rather stable. The analysis of vertical ionization potential and vertical electron affinity indicate Al4C@C80 is a good electron acceptor.
Figure
An endohedral fullerene with a trapped aluminum carbide cluster, Al4C @C80-I h , was investigated using density functional theory. A favorable binding energy, relatively large HOMO-LUMO gap, electron affinities and ionization potentials suggested it is rather stable  相似文献   
944.
In the present paper, a new type of Lewis acid–base complex BX3???Li@Calix[4]pyrrole (X = H and F) was designed and assembled based on electride molecule Li@calix[4]pyrrole (as a Lewis base) and the electron deficient molecule BX3 (as a Lewis acid) by employing quantum mechanical calculation. The new Lewis acid–base complex offers an interesting push-excess electron-pull (P-e-P) framework to enhance the stability and nonlinear optical (NLO) response. To measure the nonlinear optical response, static first hyperpolarizabilities (β 0) are exhibited. Significantly, point-face assembled Lewis acid–base complex BF3???Li@Calix[4]pyrrole (II) has considerable first hyperpolarizabilities (β 0) value (1.4?×?106 a.u.), which is about 117 times larger than reported 11,721 a.u. of electride Li@Calix[4]pyrrole. Further investigations show that, in BX3???Li@Calix[4]pyrrole with P-e-P framework, a strong charge-transfer transition from the ground state to the excited state contributes to the enhancement of first hyperpolarizability. Theory calculation of enthalpies of reaction (ΔrH0) at 298 K demonstrates that it is feasible to synthetize the complexes BX3???Li@Calix[4]pyrrole. In addition, compared with Li@Calix[4]pyrrole, the vertical ionization potential (VIP) and HOMO–LUMO gap of BX3???Li@Calix[4]pyrrole have obviously increased, due to the introduction of the Lewis acid molecule BX3. The novel Lewis acid–base NLO complex possesses not only a large nonlinear optical response but also higher stability.
Figure
A novel Lewis acid–base complex is first proposed by the combination of usual Lewis acid and an electride. It offers an interesting push-excess electron-pull framework to enhance the stability and nonlinear optical response.  相似文献   
945.
The adsorption behaviors of three carboxyl hydroxamic acids on diaspore (010) and kaolinite (001) have been studied by density functional theory (DFT) and molecular dynamics (MD) method. The results indicated that carboxyl hydroxamic acids could adsorb on diaspore surface by ionic bonds and hydrogen bonds, and adsorb on kaolinite surface by hydrogen bonds. The models of carboxyl hydroxamic acids adsorbed on diaspore and kaolinite surfaces are proposed.
Figure
Carboxyl hydroxamic acids with different number of polar groups on the surfaces of diaspore (010) and kaolinite (001)  相似文献   
946.
In order to understand the genetic diversity of wild Ussurian pears in China, chloroplast DNA (cpDNA) of 186 wild accessions from 12 populations in Inner Mongolia, Heilongjiang and Jilin Provinces and 51 Chinese and European pear cultivars including Pyrus ussuriensis, Pyrus pyrifolia, Pyrus bretschneideri, Pyrus sinkiangensis and Pyrus communis were investigated. Each accession was classified into one of three types (types A, B and C) based on two large deletions in the hypervariable regions between the accD–psaI and rps16–trnQ genes. Thirty haplotypes were identified by 32 mutations including 17 gaps (in/dels) and 15 base changes. Haplotype network analysis revealed that wild Chinese Ussurian pears could be grouped into subgroup I of type A. A haplotype, Hcp3, in subgroup I detected in Heilongjiang and Jilin Provinces was considered to be a divergent centre in Chinese Ussurian pears. However, the genetic diversity of wild accessions revealed by the two hypervariable regions was quite low. In particular, 98 % of wild Ussurian accessions in Inner Mongolia shared an identical haplotype Hcp1 and are, therefore, monomorphic. In comparison, Chinese pear cultivars were more divergent. These results suggest that the cpDNAs from wild Ussurian pears in Inner Mongolia have specifically differentiated compared to those from pears of other areas. The number of wild Ussurian pears has been decreasing because of desertification and land development, therefore conservation is needed.  相似文献   
947.
Anthocyanin-rich peaches, because of their antioxidant properties and their strong attractiveness to consumers, are increasingly considered in French peach varietal innovation programs that integrate plant genomics and classical breeding. In this study, we describe a new blood-flesh trait identified in the ‘Wu Yue Xian’ peach accession from China. ‘Wu Yue Xian’ exhibits a fully red mesocarp during the later stages of fruit development, both with green midrib leaf and normal growth of the tree. This blood-flesh phenotype clearly differs from that determined by a single recessive locus (bf) in ‘Harrow Blood’, a clone showing blood-flesh in both immature and mature fruit associated with red midrib leaf and reduced tree height. We have then provided genetic evidence that blood-flesh phenotype of ‘Wu Yue Xian’ was controlled by a single dominant locus, designated DBF (Dominant Blood-Flesh), in four successive families derived from this accession. A genetic linkage map of the blood-flesh parent (‘D6090’) of the fourth population was constructed, including 102 SSRs spanning a total distance of 562.3 cM in eight linkage groups. Whereas the bf locus is located to linkage group 4, we mapped DBF to the top of linkage group 5, thus proving that DBF and bf loci are not alleles. Among 64 predicted genes in the DBF region (505 kbp), three genes of the dihydroflavonol-4-reductase family were identified as good candidates for the control of the DBF trait. Furthermore, SSR markers flanking DBF, such as AMPP157 and AMPPG178, supply a good basis to implement marker-assisted selection for this trait.  相似文献   
948.
949.
In this study, we examined the use of multiple proteases (trypsin, LysC, tandem LysC/trypsin) on both protein identification and quantification in the Lys‐labeled SILAC mouse liver. Our results show that trypsin and tandem LysC/trypsin digestion are superior to LysC in peptides and protein identification while LysC shows advantages in quantification of Lys‐labeled proteins. Combination of experimental results from different proteases (LysC and trypsin) enabled a significant increase in the number of identified protein and protein can be quantified. Thus, taking advantage of the complementation of different protease should be a good strategy to improve both qualitative and quantitative proteomics research.  相似文献   
950.
Rapid development in the glutamate fermentation industry has dictated the need for effective fermentation monitoring by rapid and precise methods that provide real-time information for quality control of the end-product. In recent years, near-infrared (NIR) spectroscopy and multivariate calibration have been developed as fast, inexpensive, non-destructive and environmentally safe techniques for industrial applications. The purpose of this study was to develop models for monitoring glutamate, glucose, lactate and alanine concentrations in the temperature-triggered process of glutamate fermentation. NIR measurements of eight batches of samples were analyzed by partial least-squares regression with several spectral pre-processing methods. The coefficient of determination (R 2), model root-mean square error of calibration (RMSEC), root-mean square error of prediction (RMSEP) and residual predictive deviation (RPD) of the test calibration for the glutamate concentration were 0.997, 3.11 g/L, 2.56 g/L and 19.81, respectively. For the glucose concentration, R 2, RMSEC, RMSEP and RPD were 0.989, 1.37 g/L, 1.29 g/L and 9.72, respectively. For the lactate concentration, R 2, RMSEC, RMSEP and RPD were 0.975, 0.078 g/L, 0.062 g/L and 6.29, respectively. For the alanine concentration, R 2, RMSEC, RMSEP and RPD were 0.964, 0.213 g/L, 0.243 g/L and 5.29, respectively. New batch fermentation as an external validation was used to check the models, and the results suggested that the predictive capacity of the models for the glutamate fermentation process was good.  相似文献   
[首页] « 上一页 [90] [91] [92] [93] [94] 95 [96] [97] [98] [99] [100] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号