首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32716篇
  免费   2354篇
  国内免费   990篇
  36060篇
  2024年   58篇
  2023年   355篇
  2022年   803篇
  2021年   1277篇
  2020年   823篇
  2019年   1106篇
  2018年   1139篇
  2017年   909篇
  2016年   1282篇
  2015年   1888篇
  2014年   2107篇
  2013年   2522篇
  2012年   2921篇
  2011年   2707篇
  2010年   1608篇
  2009年   1414篇
  2008年   1676篇
  2007年   1645篇
  2006年   1504篇
  2005年   1264篇
  2004年   1172篇
  2003年   971篇
  2002年   906篇
  2001年   383篇
  2000年   377篇
  1999年   360篇
  1998年   267篇
  1997年   233篇
  1996年   239篇
  1995年   220篇
  1994年   166篇
  1993年   153篇
  1992年   183篇
  1991年   181篇
  1990年   143篇
  1989年   111篇
  1988年   113篇
  1987年   108篇
  1986年   81篇
  1985年   106篇
  1984年   66篇
  1983年   66篇
  1982年   44篇
  1981年   36篇
  1980年   34篇
  1979年   44篇
  1978年   30篇
  1977年   29篇
  1975年   34篇
  1974年   28篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
In the present study, some new analogues of VV-hemorphin-5, modified at position 1 and 7 by the non-proteinogenic and/or natural amino acids followed the structures Xxx-Val-Val-Tyr-Pro-Trp-Thr-Gln-NH2 and Val-Val-Tyr-Pro-Trp-Thr-Yyy-NH2, where Xxx is Ile or Aib and Yyy is Lys/Orn/Dap/Dab were synthesized to investigate their potential antinociceptive activities. We report also the redox potentials and the acid/base properties as pKa values of these peptide analogues which were compared toward electrochemical behaviour of tryptophan containing peptides. All analogues showed a short lasting initial antinociceptive effect, however H2 hemorphin analogue is characterized with prolong and strong antinociceptive effect, while the other peptide analogues exerted more variable effects on the visceral nociception depending on the dose or time after the intracerebral injection.  相似文献   
992.
In the current study, we scrutinized the effect of sevoflurane and halothane on cognitive and immune function in young rats. The rats were divided into following groups: sevoflurane, halothane and sevoflurane + halothane groups, respectively. The rats were regularly treated with the pre-determined treatment. We also scrutinized the serum proinflammatory cytokines including IL-10, IL-4 and IL-2; brain level IL-1β; hippocampal neuronal apoptosis concentration were estimated. The water maze test was performed in rats for the estimation of cognitive ability. During the water maze test, on the 1st day the sevoflurane group showed the latency; sevoflurane and sevoflurane + halothane group demonstrated the declined latency gradually as compared to the control group rats after the 3 days. The latency of the control, halothane, sevoflurane + halothane group rats showed the reduced latency and also showed the reduced crossing circle times. The hippocampal neuron apoptosis was significantly increased in halothane and sevoflurane + halothane group as compared to control group rats, respectively. Control group rats demonstrated the increased neuron apoptosis. The proinflammatory cytokines including IL-10 and IL-4 was significantly higher in sevoflurane, halothane and sevoflurane + halothane group rats after anesthesia and the whole brain IL-1β was significantly decrease in the sevoflurane, halothane and sevoflurane + halothane as compared to control group. Sevoflurane can inhibit the anesthesia effect of halothane on the immune and cognitive function of rats.  相似文献   
993.
Caspases are cysteine‐dependent proteases and are important components of animal apoptosis. They introduce specific breaks after aspartate residues in a number of cellular proteins mediating programmed cell death (PCD). Plants encode only distant homologues of caspases, the metacaspases that are involved in PCD, but do not possess caspase‐specific proteolytic activity. Nevertheless, plants do display caspase‐like activities indicating that enzymes structurally distinct from classical caspases may operate as caspase‐like proteases. Here, we report the identification and characterisation of a novel PCD‐related subtilisin‐like protease from tobacco and rice named phytaspase (plant aspartate‐specific protease) that possesses caspase specificity distinct from that of other known caspase‐like proteases. We provide evidence that phytaspase is synthesised as a proenzyme, which is autocatalytically processed to generate the mature enzyme. Overexpression and silencing of the phytaspase gene showed that phytaspase is essential for PCD‐related responses to tobacco mosaic virus and abiotic stresses. Phytaspase is constitutively secreted into the apoplast before PCD, but unexpectedly is re‐imported into the cell during PCD providing insights into how phytaspase operates.  相似文献   
994.
To facilitate the release of infectious progeny virions, human immunodeficiency virus type 1 (HIV-1) exploits the Endosomal Sorting Complex Required for Transport (ESCRT) pathway by engaging Tsg101 and ALIX through late assembly (L) domains in the C-terminal p6 domain of Gag. However, the L domains in p6 are known to be dispensable for efficient particle production by certain HIV-1 Gag constructs that have the nucleocapsid (NC) domain replaced by a foreign dimerization domain to substitute for the assembly function of NC. We now show that one such L domain-independent HIV-1 Gag construct (termed ZWT) that has NC-p1-p6 replaced by a leucine zipper domain is resistant to dominant-negative inhibitors of the ESCRT pathway that block HIV-1 particle production. However, ZWT became dependent on the presence of an L domain when NC-p1-p6 was restored to its C terminus. Furthermore, when the NC domain was replaced by a leucine zipper, the p1-p6 region, but not p6 alone, conferred sensitivity to inhibition of the ESCRT pathway. In an authentic HIV-1 Gag context, the effect of an inhibitor of the ESCRT pathway on particle production could be alleviated by deleting a portion of the NC domain together with p1. Together, these results indicate that the ESCRT pathway dependence of HIV-1 budding is determined, at least in part, by the NC-p1 region of Gag.Human immunodeficiency virus type 1 (HIV-1) and other retroviruses hijack the cellular Endosomal Sorting Complex Required for Transport (ESCRT) pathway to promote the detachment of virions from the cell surface and from each other (3, 21, 42, 44, 47). The ESCRT pathway was initially identified based on its requirement for the sorting of ubiquitinated cargo into multivesicular bodies (MVB) (50, 51). During MVB biogenesis, the ESCRT pathway drives the membrane deformation and fission events required for the inward vesiculation of the limiting membrane of this organelle (26, 29, 50, 51). More recently, it emerged that the ESCRT pathway is also essential for the normal abscission of daughter cells during the final stage of cell division (10, 43). Most of the components of the ESCRT pathway are involved in the formation of four heteromeric protein complexes termed ESCRT-0, ESCRT-I, ESCRT-II, and ESCRT-III. Additional components include ALIX, which interacts both with ESCRT-I and ESCRT-III, and the AAA ATPase Vps4, which mediates the disassembly of ESCRT-III (29, 42).The deformation and scission of endocytic membranes is thought to be mediated by ESCRT-III, which, together with Vps4, constitutes the most conserved element of the pathway (23, 26, 42). Indeed, it was recently shown that purified yeast ESCRT-III induces membrane deformation (52), and in another study three subunits of yeast ESCRT-III were sufficient to promote the formation of intralumenal vesicles in an in vitro assay (61). In mammals, ESCRT-III is formed by the charged MVB proteins (CHMPs), which are structurally related and tightly regulated through autoinhibition (2, 33, 46, 53, 62). The removal of an inhibitory C-terminal domain induces polymerization and association with endosomal membranes and converts CHMPs into potent inhibitors of retroviral budding (34, 46, 53, 60, 62). Alternatively, CHMPs can be converted into strong inhibitors of the ESCRT pathway and of HIV-1 budding through the addition of a bulky tag such as green fluorescent protein (GFP) or red fluorescent protein (RFP) (27, 36, 39, 54). Retroviral budding in general is also strongly inhibited by catalytically inactive Vps4 (22, 41, 55), or upon Vsp4B depletion (31), confirming the crucial role of ESCRT-III.Retroviruses engage the ESCRT pathway through the activity of so-called late assembly (L) domains in Gag. In the case of HIV-1, the primary L domain maps to a conserved PTAP motif in the C-terminal p6 domain of Gag (24, 28) and interacts with the ESCRT-I component Tsg101 (15, 22, 40, 58). HIV-1 p6 also harbors an auxiliary L domain of the LYPxnL type, which interacts with the V domain of ALIX (20, 35, 39, 54, 59, 63). Interestingly, Tsg101 binding site mutants of HIV-1 can be fully rescued through the overexpression of ALIX, and this rescue depends on the ALIX binding site in p6 (20, 56). In contrast, the overexpression of a specific splice variant of the ubiquitin ligase Nedd4-2 has been shown to rescue the release and infectivity of HIV-1 mutants lacking all known L domains in p6 (12, 57). Nedd4 family ubiquitin ligases had previously been implicated in the function of PPxY-type L domains, which also depend on an intact ESCRT pathway for function (4, 32, 38). However, HIV-1 Gag lacks PPxY motifs, and the WW domains of Nedd4-2, which mediate its interaction with PPxY motifs, are dispensable for the rescue of HIV-1 L domain mutants (57).ALIX also interacts with the nucleocapsid (NC) region of HIV-1 Gag (18, 49), which is located upstream of p6 and the p1 spacer peptide. ALIX binds HIV-1 NC via its Bro1 domain, and the capacity to interact with NC and to stimulate the release of a minimal HIV-1 Gag construct is shared among widely divergent Bro1 domain proteins (48). Based on these findings and the observation that certain mutations in NC cause a phenotype that resembles that of L domain mutants, it has been proposed that NC cooperates with p6 to recruit the machinery required for normal HIV-1 budding (18, 49).NC also plays a role in Gag polyprotein multimerization, and this function of NC depends on its RNA-binding activity (5-8). It has been proposed that the role of the NC-nucleic acid interaction during assembly is to promote the formation of Gag dimers (37), and HIV-1 assembly in the absence of NC can indeed be efficiently rescued by leucine zipper dimerization domains (65). Surprisingly, in this setting the L domains in p6 also became dispensable, since particle production remained efficient even when the entire NC-p1-p6 region of HIV-1 Gag was replaced by a leucine zipper (1, 65). These findings raised the possibility that the reliance of wild-type (WT) HIV-1 Gag on a functional ESCRT pathway is, at least in part, specified by NC-p1-p6. However, it also remained possible that the chimeric Gag constructs engaged the ESCRT pathway in an alternative manner.In the present report, we provide evidence supporting the first of those two possibilities. Particle production became independent of ESCRT when the entire NC-p1-p6 region was replaced by a leucine zipper, and reversion to ESCRT dependence was shown to occur as a result of restoration of p1-p6 but not of p6 alone. Furthermore, although the deletion of p1 alone had little effect in an authentic HIV-1 Gag context, the additional removal of a portion of NC improved particle production in the presence of an inhibitor of the ESCRT pathway. Together, these data imply that the NC-p1 region plays an important role in the ESCRT-dependence of HIV-1 particle production.  相似文献   
995.
Doubled haploid lines (n=160) from a cross between wheat cultivars Cranbrook (high dough extensibility) and Halberd (low dough extensibility) were grown at three Australian locations. The parents differ at all high- and low-molecular-weight glutenin loci. Dough rheological parameters were measured using small-scale testing procedures, and quantitative trait locus (QTL) mapping procedures were carried out using an existing well-saturated genetic linkage map for this cross. Genetic parameters were estimated using three software packages: QTLCartographer, Epistat and Genstat. Results indicated that environmental factors are a major determinant of dough extensibility across the three trial sites, whereas genotypic factors are the major determinants of dough strength. Composite interval mapping analysis across the 21 linkage groups revealed that as expected, the main additive QTLs for dough rheological properties are located at the high- and low-molecular-weight glutenin loci. A new QTL on chromosome 5A for M-extensibility (a mixograph-estimated measure of extensibility) was detected. Analysis of epistatic interactions revealed that there were significant conditional epistatic interactions related with the additive effects of glutenin loci on dough rheological properties. Therefore, the additive genetic effects of glutenins on dough rheological properties are conditional upon the genetic background of the wheat line. The molecular basis of the interactions with the glutenin loci may be via proteins that modify or alter the gluten protein matrix or variations in the expression level of the glutenin genes. Reverse-phase high performance liquid chromatography analysis of the molar number of individual glutenin subunits across the population showed that certain conditional epistases resulted in increased expression of the affected glutenin. The epistatic interactions detected in this study provide a possible explanation of the variable genetic effects of some glutenins on quality attributes in different genetic backgrounds and provide essential information for the accurate prediction of glutenin related variance in marker-assisted wheat breeding.  相似文献   
996.
Cyclic ADP-ribose (cADPR) is an intracellular calcium mobilizer generated from NAD(+) by the ADP-ribosyl cyclases CD38 and BST-1. cADPR, both exogenously added and paracrinally produced by a CD38(+) feeder layer, has recently been demonstrated to stimulate the in vitro proliferation of human hemopoietic progenitors (HP) and also the in vivo expansion of hemopoietic stem cells. The low density of BST-1 expression on bone marrow (BM) stromal cells and the low specific activity of the enzyme made it unclear whether cADPR generation by a BST-1(+) stroma could stimulate HP proliferation in the BM microenvironment. We developed and characterized two BST-1(+) stromal cell lines, expressing an ectocellular cyclase activity similar to that of BST-1(+) human mesenchymal stem cells, the precursors of BM stromal cells. Long term co-culture of cord blood-derived HP over these BST-1(+) feeders determined their expansion. Influx of paracrinally generated cADPR into clonogenic HP was mediated by a concentrative, nitrobenzylthioinosine- and dipyridamole-inhibitable nucleoside transporter, this providing a possible explanation to the effectiveness of the hormone-like concentrations of the cyclic nucleotide measured in the medium conditioned by BST-1(+) feeders. These results suggest that the BST-1-catalyzed generation of extracellular cADPR, followed by the concentrative uptake of the cyclic nucleotide by HP, may be physiologically relevant in normal hemopoiesis.  相似文献   
997.
This report describes the rationale, approaches, organization, and resource development leading to a large-scale deletion bin map of the hexaploid (2n = 6x = 42) wheat genome (Triticum aestivum L.). Accompanying reports in this issue detail results from chromosome bin-mapping of expressed sequence tags (ESTs) representing genes onto the seven homoeologous chromosome groups and a global analysis of the entire mapped wheat EST data set. Among the resources developed were the first extensive public wheat EST collection (113,220 ESTs). Described are protocols for sequencing, sequence processing, EST nomenclature, and the assembly of ESTs into contigs. These contigs plus singletons (unassembled ESTs) were used for selection of distinct sequence motif unigenes. Selected ESTs were rearrayed, validated by 5′ and 3′ sequencing, and amplified for probing a series of wheat aneuploid and deletion stocks. Images and data for all Southern hybridizations were deposited in databases and were used by the coordinators for each of the seven homoeologous chromosome groups to validate the mapping results. Results from this project have established the foundation for future developments in wheat genomics.  相似文献   
998.
The functional activities of the photosynthetic apparatus of two tomato cultivars of different thermotolerance were investigated after a short period of high temperature treatment. Seedlings of two tomato genotypes, Lycopersicon esculentum var. Campbell-28 and the wild thermotolerant Nagcarlang, were grown under a photoperiod of 16h at 25 degrees C and dark period of 8h at 20 degrees C. At the fourth true leaf stage, a group of plants was exposed to heat stress of 45 degrees C for 2 h. The heat shock treatment caused important reductions of the net photosynthetic rate (Pn) of Campbell-28 plants due to non-stomatal components. These non-stomatal effects were not evident in Nagcarlang-treated plants. This reduction in the CO2 assimilation rate observed in Campbell-28 was generated by affections in the Calvin cycle and also in the PSII functioning. No changes in these parameters were observed in the thermotolerant genotype after the stress. Injury to the plasma membrane because of the heat stress was evident only in the Campbell-28 genotype. Heat led to a sun-type adaptation response of the photosynthesis pigment apparatus for the Nagcarlang genotype, but not for Campbell-28, and thus an increase in chlorophyll a/b ratio and a decrease in chlorophyll/carotenoid ratio were shown in Nagcarlang stressed plants.  相似文献   
999.
Collagen-phosphate composites (COL/β-TCP) are novel materials that have the potential to be used as bone analogues. The aim of our study was to develop a porous bioactive material composed of type I collagen, the main bone protein and tricalcium phosphate, the mineral phase of natural bone, and investigate their in vitro biocompatibility in a human dermal fibroblast culture system. In order to obtain the bioactive materials, type I collagen was isolated from bovine tendon and characterized by physicochemical methods. β-TCP was obtained from calcium carbonate by thermal decomposition at 900 °C temperature. The powder was examined with X-ray diffraction. Two variants of COL/β-TCP scaffolds (P1 and P2) were prepared and examined by scanning electron microscopy. Our results revealed a microporous structure with small white aggregates of β-TCP, non-homogenous scattered in the collagen framework without any preferential orientation. The biocompatibility of the obtained scaffolds was tested by biochemical and histological methods on human fibroblast cultures. Both materials acted as good subtrates for human dermal fibroblast proliferation and migration.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号