首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28279篇
  免费   1926篇
  国内免费   975篇
  2024年   39篇
  2023年   272篇
  2022年   627篇
  2021年   1110篇
  2020年   736篇
  2019年   989篇
  2018年   1022篇
  2017年   787篇
  2016年   1157篇
  2015年   1641篇
  2014年   1866篇
  2013年   2229篇
  2012年   2545篇
  2011年   2350篇
  2010年   1349篇
  2009年   1195篇
  2008年   1370篇
  2007年   1282篇
  2006年   1187篇
  2005年   1025篇
  2004年   917篇
  2003年   809篇
  2002年   739篇
  2001年   356篇
  2000年   367篇
  1999年   336篇
  1998年   258篇
  1997年   213篇
  1996年   229篇
  1995年   216篇
  1994年   179篇
  1993年   139篇
  1992年   196篇
  1991年   162篇
  1990年   148篇
  1989年   112篇
  1988年   117篇
  1987年   120篇
  1986年   81篇
  1985年   106篇
  1984年   76篇
  1983年   63篇
  1982年   39篇
  1981年   37篇
  1980年   31篇
  1979年   39篇
  1978年   35篇
  1977年   33篇
  1975年   38篇
  1974年   30篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Different from previously reported mechanical alloying route to synthesize Sn x P3, novel Sn4P3/reduced graphene oxide (RGO) hybrids are synthesized for the first time through an in situ low‐temperature solution‐based phosphorization reaction route from Sn/RGO. Sn4P3 nanoparticles combining with advantages of high conductivity of Sn and high capacity of P are homogenously loaded on the RGO nanosheets, interconnecting to form 3D mesoporous architecture nanostructures. The Sn4P3/RGO hybrid architecture materials exhibit significantly improved electrochemical performance of high reversible capacity, high‐rate capability, and excellent cycling performance as sodium ion batteries (SIBs) anode materials, showing an excellent reversible capacity of 656 mA h g?1 at a current density of 100 mA g?1 over 100 cycles, demonstrating a greatly enhanced rate capability of a reversible capacity of 391 mA h g?1 even at a high current density of 2.0 A g?1. Moreover, Sn4P3/RGO SIBs anodes exhibit a superior long cycling life, delivering a high capacity of 362 mA h g?1 after 1500 cycles at a high current density of 1.0 A g?1. The outstanding cycling performance and rate capability of these porous hierarchical Sn4P3/RGO hybrid anodes can be attributed to the advantage of porous structure, and the synergistic effect between Sn4P3 nanoparticles and RGO nanosheets.  相似文献   
992.
993.
Two kinds of free‐standing electrodes, reduced graphene oxide (rGO)‐wrapped Fe‐doped MnO2 composite (G‐MFO) and rGO‐wrapped hierarchical porous carbon microspheres composite (G‐HPC) are fabricated using a frozen lake‐inspired, bubble‐assistance method. This configuration fully enables utilization of the synergistic effects from both components, endowing the materials to be excellent electrodes for flexible and lightweight electrochemical capacitors. Moreover, a nonaqueous HPC‐doped gel polymer electrolyte (GPE‐HPC) is employed to broad voltage window and improve heat resistance. A fabricated asymmetric supercapacitor based on G‐MFO cathode and G‐HPC anode with GPE‐HPC electrolyte achieves superior flexibility and reliability, enhanced energy/power density, and outstanding cycling stability. The ability to power light‐emitting diodes also indicates the feasibility for practical use. Therefore, it is believed that this novel design may hold great promise for future flexible electronic devices.  相似文献   
994.
995.
996.
The ability of the white-rot fungus Ganoderma sp.En3 to decolorize different kinds of dyes widely applied in the textile and dyeing industry, including the anthraquinone dye Remazol Brilliant Blue R (RBBR), indigo dye indigo carmine and triphenylmethane dye methyl green, was evaluated in this study. Ganoderma sp.En3 had a strong capability of decolorizing high concentrations of RBBR, indigo carmine and methyl green. Obvious reduction of Chemical Oxygen Demand was observed after decolorization of different dyes. Ganoderma sp.En3 had a strong ability to tolerate RBBR, indigo carmine and methyl green with high concentrations. High concentrations of RBBR, indigo carmine and methyl green could also be efficiently decolorized by the crude enzyme of Ganoderma sp.En3. Different redox mediators such as syringaldehyde, acetosyringone and acetovanillone could enhance the decolorization capability for higher concentration of indigo carmine and methyl green. Different metal ions had little effect on the ability of the crude enzyme to decolorize indigo carmine and methyl green. Our study suggested that Ganoderma sp.En3 had a strong capability for decolorizing and tolerating high concentrations of different types of dyes such as RBBR, indigo carmine and methyl green.  相似文献   
997.
Schizochytrium is a marine microalga that requires high concentrations of sea salt for growth, although problems arise with significant amounts of chloride ions in the culture medium, which corrodes the fermenters. In this work, we evaluated that cell growth and docosahexaenoic acid (DHA) production can be improved when using 1 % (w/v) sodium sulfate instead of 2 % (w/v) sea salt in the culture medium for Schizochytrium sp. S056. In practice, the use of sodium sulfate as the sodium salt led to chloride ion levels in the medium that can be completely removed, thus avoiding fermenter corrosion during Schizochytrium sp. S056 growth, reducing cost and increasing DHA production, and simplifying the disposal of fermentation wastewater. Additionally, we demonstrated that the osmolality of growth media did not play a crucial role in the production of DHA. These findings may be significantly important to companies involved in production of PUFAs by marine microbes.  相似文献   
998.
The Pine Wood Nematode (PWN) Bursaphelenchus xylophilus is a severe forest pathogen in countries where it has been introduced and is considered a worldwide quarantine organism. In this study, protein markers for differentiating populations of this nematode were identified by studying differences among four selected Iberian and one American population. These populations were compared by quantitative proteomics (iTRAQ). From a total of 2860 proteins identified using the public database from the B. xylophilus genome project, 216 were unambiguous and significantly differentially regulated in the studied populations. Comparisons of their pairwise ratio were statistically treated and supported in order to convert them into discrete character states, suggesting that 141 proteins were not informative as population specific markers. Application of the Character Compatibility methodology on the remaining 75 proteins (belonging to families with different biological functions) excludes 27 which are incompatible among them. Considering only the compatible proteins, the method selects a subset of 30 specific unique protein markers which allowed the compared classification of the Iberian isolates. This approach makes it easier search for diagnostic tools and phylogenetic inference within species and populations of a pathogen exhibiting a high level of genetic diversity.  相似文献   
999.
Chitosanase (CSN) from Aspergillus fumigatus has good thermal stability, wide pH range duration, and effective hydrolysis for chitosan. Inhere, CSN was successfully expressed in Escherichia coli followed by extracellular secretion under the guidance of an N-terminal signal peptide PelB, which effectively prompted its secretion out of E. coli cells. To facilitate its later purification, N-terminal or C-terminal 6xHis epitope tag was added to the PelB-CSN protein complex. Our results indicated that PelB-CSN without 6xHis-tag (PelB-CSN) or with N-terminal 6xHis-tag (PelB-CSN-N) can both be effectively secreted into the medium, while CSN with 6xHis-tag anchored at C-terminus was expressed as inclusion bodies. Process optimization strategies were further developed to improve the secretion efficiency of recombinant PelB-CSN-N in E. coli. Under the induction of 10 g/L lactose in shake-flask culture, the extracellular activity of CSN reached 6015 U/mL at 25 °C in TB medium containing 1 % glycine. Moreover, a fed-batch fermentation strategy for high-cell-density cultivation was applied in a 5-L fermenter, increasing the extracellular CSN activity to 14,000 U/mL in 2-day fermentation with the optimal addition of lactose and glycine.  相似文献   
1000.

Background

Monoacylglycerol lipase (MAGL), a critical lipolytic enzyme, has emerged as a key regulator of tumor progression, yet its biological function and clinical significance in hepatocellular carcinoma (HCC) is still unknown.

Methods

In this study, we used a tissue microarray containing samples from 170 HCC patients to evaluate the expression of MAGL and its correlation with other clinicopathologic characteristics. In addition, we investigated the regulating effects of MAGL on various HCC lines. Finally, we identified the NF-κB signaling pathway participated in MAGL-mediated epithelial-mesenchymal transition (EMT) using HCC cell lines with different metastatic potentials.

Results

The expression of MAGL was significantly higher in HCC tumors than in matched peritumor tissues. Specifically, high MAGL expression was found in tumors with larger tumor size, microvascular invasion, poor differentiation, or advanced TNM stage. In addition, the clinical prognosis for the MAGLhigh group was markedly poorer than that for the MAGLlow group in the 1-, 3-, and 5-year overall survival times and recurrence rates of HCC patients. MAGL expression was an independent prognostic factor for both survival and recurrence after curative resection. Furthermore, the upregulation of MAGL in HCC cells promoted cell growth and invasiveness abilities, and accompanied by EMT. In contrast, downregulation of MAGL obviously inhibited these characteristics. Moreover, further investigations verified that MAGL facilitates HCC progression via NF-κB-mediated EMT process.

Conclusions

Our findings demonstrate MAGL could promote HCC progression by the induction of EMT and suggest a potential therapeutic target, as well as a biomarker for prognosis, in patients with HCC.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号