全文获取类型
收费全文 | 4944篇 |
免费 | 306篇 |
国内免费 | 2篇 |
专业分类
5252篇 |
出版年
2024年 | 8篇 |
2023年 | 16篇 |
2022年 | 71篇 |
2021年 | 81篇 |
2020年 | 53篇 |
2019年 | 72篇 |
2018年 | 100篇 |
2017年 | 86篇 |
2016年 | 157篇 |
2015年 | 264篇 |
2014年 | 320篇 |
2013年 | 336篇 |
2012年 | 486篇 |
2011年 | 424篇 |
2010年 | 271篇 |
2009年 | 242篇 |
2008年 | 340篇 |
2007年 | 265篇 |
2006年 | 257篇 |
2005年 | 221篇 |
2004年 | 192篇 |
2003年 | 169篇 |
2002年 | 148篇 |
2001年 | 127篇 |
2000年 | 124篇 |
1999年 | 113篇 |
1998年 | 38篇 |
1997年 | 29篇 |
1996年 | 21篇 |
1995年 | 21篇 |
1994年 | 20篇 |
1993年 | 17篇 |
1992年 | 26篇 |
1991年 | 23篇 |
1990年 | 14篇 |
1989年 | 12篇 |
1988年 | 8篇 |
1987年 | 5篇 |
1986年 | 9篇 |
1984年 | 4篇 |
1982年 | 4篇 |
1981年 | 3篇 |
1977年 | 4篇 |
1976年 | 4篇 |
1974年 | 7篇 |
1973年 | 3篇 |
1972年 | 3篇 |
1969年 | 4篇 |
1967年 | 5篇 |
1966年 | 5篇 |
排序方式: 共有5252条查询结果,搜索用时 15 毫秒
11.
S Oh J B Rubin M V Bennett V K Verselis T A Bargiello 《The Journal of general physiology》1999,114(3):339-364
The fully open state of heterotypic gap junction channels formed by pairing cells expressing connexin 32 (Cx32) with those expressing connexin 26 (Cx26) rectifies in a way that cannot be predicted from the current-voltage (I-V) relation of either homotypic channel. Using a molecular genetic analysis, we demonstrate that charged amino acids positioned in the amino terminus (M1 and D2) and first extracellular loop (E42) are major determinants of the current-voltage relation of the fully open state of homotypic and heterotypic channels formed by Cx26 and Cx32. The observed I-V relations of wild-type and mutant channels were closely approximated by those obtained with the electrodiffusive model of Chen and Eisenberg (Chen, D., and R. Eisenberg. 1993. Biophys. J. 64:1405-1421), which solves the Poisson-Nernst-Plank equations in one dimension using charge distribution models inferred from the molecular analyses. The rectification of the Cx32/Cx26 heterotypic channel results from the asymmetry in the number and position of charged residues. The model required the incorporation of a partial charge located near the channel surface to approximate the linear I-V relation observed for the Cx32*Cx26E1 homotypic channel. The best candidate amino acid providing this partial charge is the conserved tryptophan residue (W3). Incorporation of the partial charge of residue W3 and the negative charge of the Cx32E41 residue into the charge profile used in the Poisson-Nernst-Plank model of homotypic Cx32 and heterotypic Cx26/Cx32 channels resulted in I-V relations that closely resembled the observed I-V relations of these channels. We further demonstrate that some channel substates rectify. We suggest that the conformational changes associated with transjunctional voltage (V(j))-dependent gating to these substates involves a narrowing of the cytoplasmic entry of the channel that increases the electrostatic effect of charges in the amino terminus. The rectification that is observed in the Cx32/Cx26 heterotypic channel is similar although less steep than that reported for some rectifying electrical synapses. We propose that a similar electrostatic mechanism, which results in rectification through the open and substates of heterotypic channels, is sufficient to explain the properties of steeply rectifying electrical synapses. 相似文献
12.
13.
14.
15.
Song MS Moon HJ Kwon HI Pascua PN Lee JH Baek YH Woo KJ Choi J Lee S Yoo H Oh I Yoon Y Rho JB Sung MH Hong SP Kim CJ Choi YK 《Journal of microbiology (Seoul, Korea)》2012,50(3):478-488
The threat of a highly pathogenic avian influenza (HPAI) H5N1 virus causing the next pandemic remains a major concern. In this study, we evaluated the immunogenicity and efficacy of an inactivated whole-virus H5N1 pre-pandemic vaccine (MG1109) formulated by Green Cross Co., Ltd containing the hemagglutinin (HA) and neuraminidase (NA) genes of the clade 1 A/Vietnam/1194/04 virus in the backbone of A/Puerto Rico/8/34 (RgVietNam/04xPR8/34). Administration of the MG1109 vaccine (2-doses) in mice and ferrets elicited high HI and SN titers in a dose-dependent manner against the homologous (RgVietNam/04xPR8/34) and various heterologous H5N1 strains, (RgKor/W149/06xPR8/34, RgCambodia/04xPR8/34, RgGuangxi/05xPR8/34), including a heterosubtypic H5N2 (A/Aquatic bird/orea/W81/05) virus. However, efficient cross-reactivity was not observed against heterosubtypic H9N2 (A/Ck/Korea/H0802/08) and H1N1 (PR/8/34) viruses. Mice immunized with 1.9 μg HA/dose of MG1109 were completely protected from lethal challenge with heterologous wild-type HPAI H5N1 A/EM/Korea/W149/06 (clade 2.2) and mouse-adapted H5N2 viruses. Furthermore, ferrets administered at least 3.8 μg HA/dose efficiently suppressed virus growth in the upper respiratory tract and lungs. Vaccinated mice and ferrets also demonstrated attenuation of clinical disease signs and limited virus spread to other organs. Thus, this vaccine provided immunogenic responses in mouse and ferret models even against challenge with heterologous HPAI H5N1 and H5N2 viruses. Since the specific strain of HPAI H5N1 virus that would potentially cause the next outbreak is unknown, pre-pandemic vaccine preparation that could provide cross-protection against various H5 strains could be a useful approach in the selection of promising candidate vaccines in the future. 相似文献
16.
Ooi CH Oh HK Wang HZ Tan AL Wu J Lee M Rha SY Chung HC Virshup DM Tan P 《PLoS genetics》2011,7(12):e1002415
MicroRNAs (miRNAs) are important components of cellular signaling pathways, acting either as pathway regulators or pathway targets. Currently, only a limited number of miRNAs have been functionally linked to specific signaling pathways. Here, we explored if gene expression signatures could be used to represent miRNA activities and integrated with genomic signatures of oncogenic pathway activity to identify connections between miRNAs and oncogenic pathways on a high-throughput, genome-wide scale. Mapping >300 gene expression signatures to >700 primary tumor profiles, we constructed a genome-wide miRNA-pathway network predicting the associations of 276 human miRNAs to 26 oncogenic pathways. The miRNA-pathway network confirmed a host of previously reported miRNA/pathway associations and uncovered several novel associations that were subsequently experimentally validated. Globally, the miRNA-pathway network demonstrates a small-world, but not scale-free, organization characterized by multiple distinct, tightly knit modules each exhibiting a high density of connections. However, unlike genetic or metabolic networks typified by only a few highly connected nodes ("hubs"), most nodes in the miRNA-pathway network are highly connected. Sequence-based computational analysis confirmed that highly-interconnected miRNAs are likely to be regulated by common pathways to target similar sets of downstream genes, suggesting a pervasive and high level of functional redundancy among coexpressed miRNAs. We conclude that gene expression signatures can be used as surrogates of miRNA activity. Our strategy facilitates the task of discovering novel miRNA-pathway connections, since gene expression data for multiple normal and disease conditions are abundantly available. 相似文献
17.
Leem JY Park DS Suh EY Hur JH Oh HW Park HY 《Archives of insect biochemistry and physiology》2007,66(4):204-213
A new antimicrobial peptide, cryptonin, was isolated and characterized from the adult Korean blackish cicada, Cryptotympana dubia. It consists of 24 amino acid residues and has a molecular weight of 2,704 Da on mass spectroscopy. The predicted alpha-helical structure analysis and increased helix percent in 40% trifloroethanol of cryptonin suggests that it belongs to the typical linear alpha-helix forming peptide. Binding of the biotin-labeled cryptonin at the surface of E. coli cells and increased influx of propidium iodide in E. coli after cryptonin treatment indicates that it kills microbial cells by binding bacterial cell surfaces and disrupting the cell permeability. Cryptonin showed strong antibacterial (MIC 1.56-25 microg/ml) and antifungal (MIC 3.12-50 microg/ml) activities against tested bacteria and fungi including two antibiotic-resistant bacterial strains; methicilin-resistant S. aureus and vancomycin-resistant Enterococci (MIC 25 microg/ml, each). 相似文献
18.
Choi JY Lee SH Park CY Heo WD Kim JC Kim MC Chung WS Moon BC Cheong YH Kim CY Yoo JH Koo JC Ok HM Chi SW Ryu SE Lee SY Lim CO Cho MJ 《The Journal of biological chemistry》2002,277(24):21630-21638
Plants express numerous calmodulin (CaM) isoforms that exhibit differential activation or inhibition of CaM-dependent enzymes in vitro; however, their specificities toward target enzyme/protein binding are uncertain. A random peptide library displaying a 22-mer peptide on a bacteriophage surface was constructed to screen peptides that specifically bind to plant CaM isoforms (soybean calmodulin (ScaM)-1 and SCaM-4 were used in this study) in a Ca2+-dependent manner. The deduced amino acid sequence analyses of the respective 80 phage clones that were independently isolated via affinity panning revealed that SCaM isoforms require distinct amino acid sequences for optimal binding. SCaM-1-binding peptides conform to a 1-5-10 ((FILVW)XXX(FILV) XXXX(FILVW)) motif (where X denotes any amino acid), whereas SCaM-4-binding peptide sequences conform to a 1-8-14 ((FILVW)XXXXXX(FAILVW)XXXXX(FILVW)) motif. These motifs are classified based on the positions of conserved hydrophobic residues. To examine their binding properties further, two representative peptides from each of the SCaM isoform-binding sequences were synthesized and analyzed via gel mobility shift assays, Trp fluorescent spectra analyses, and phosphodiesterase competitive inhibition experiments. The results of these studies suggest that SCaM isoforms possess different binding sequences for optimal target interaction, which therefore may provide a molecular basis for CaM isoform-specific function in plants. Furthermore, the isolated peptide sequences may serve not only as useful CaM-binding sequence references but also as potential reagents for studying CaM isoform-specific function in vivo. 相似文献
19.
20.
Styliani Consta Anatoly Malevanets Myong In Oh Mahmoud Sharawy 《Molecular simulation》2018,44(13-14):1033-1043
AbstractThe free energy calculation method emerges as a viable technique for ‘in-silico’ calorimetry. Efficient sampling techniques and the good choice of a reaction path connecting the reactant and the product state enable accurate computations of the free energy differences. We argue that in many cases the thermodynamic integration technique has the lowest variance when the transformation between the reactant and the product state proceeds along the natural path of the studied chemical reaction. We provide examples of free energy calculations for the fragmentation of the charged clusters and the swapping reaction of oligomer formation in proteins that follow a tentative reaction mechanism. 相似文献