首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   7篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2015年   3篇
  2014年   9篇
  2013年   3篇
  2012年   7篇
  2011年   5篇
  2010年   5篇
  2009年   1篇
  2008年   5篇
  2007年   3篇
  2004年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1980年   1篇
  1975年   1篇
排序方式: 共有57条查询结果,搜索用时 15 毫秒
51.
Grassland ecosystems support large communities of aboveground herbivores that are known to directly and indirectly affect belowground properties such as the microbial community composition, richness, or biomass. Even though multiple species of functionally different herbivores coexist in grassland ecosystems, most studies have only considered the impact of a single group, i.e., large ungulates (mostly domestic livestock) on microbial communities. Thus, we investigated how the exclusion of four groups of functionally different herbivores affects bacterial community composition, richness, and biomass in two vegetation types with different grazing histories. We progressively excluded large, medium, and small mammals as well as invertebrate herbivores using exclosures at 18 subalpine grassland sites (9 per vegetation type). We assessed the bacterial community composition using terminal restriction fragment length polymorphism (T-RFLP) at each site and exclosure type during three consecutive growing seasons (2009–2011) for rhizosphere and mineral soil separately. In addition, we determined microbial biomass carbon (MBC), root biomass, plant carbon:nitrogen ratio, soil temperature, and soil moisture. Even though several of these variables were affected by herbivore exclusion and vegetation type, against our expectations, bacterial community composition, richness, or MBC were not. Yet, bacterial communities strongly differed between the three growing seasons as well as to some extent between our study sites. Thus, our study indicates that the spatiotemporal variability in soil microclimate has much stronger effects on the soil bacterial communities than the grazing regime or the composition of the vegetation in this high-elevation ecosystem.  相似文献   
52.

Key message

Stem WC may decline during the day. Zero-flow dT m increases when WC decreases. Use of nighttime dT m in the calculation of sap flux density during the day might introduce errors.

Abstract

There is increasing evidence of diel variation in water content of stems of living trees as a result of changes in internal water reserves. The interplay between dynamic water storage and sap flow is of current interest, but the accuracy of measurement of both variables has come into question. Fluctuations in stem water content may induce inaccuracy in thermal-based measurements of sap flux density because wood thermal properties are dependent on water content. The most widely used thermal method for measuring sap flux density is the thermal dissipation probe (TDP) with continuous heating, which measures the influence of moving sap on the temperature difference between a heated needle and a reference needle vertically separated in the flow stream. The objective of our study was to investigate how diel fluctuations in water content could influence TDP measurements of sap flux density. We analysed the influence of water content on the zero-flow maximum temperature difference, dT m, which is used as the reference for calculating sap flux density, and present results of a dehydration experiment on cut branch segments of American sycamore (Platanus occidentalis L.). We demonstrate both theoretically and experimentally that dT m increases when stem water content declines. Because dT m is measured at night when water content is high, this phenomenon could result in underestimations of sap flux density during the day when water content is lower. We conclude that diel dynamics in water content should be considered when TDP is used to measure sap flow.  相似文献   
53.

Introduction  

The glucocorticoid receptor (GR) plays an important regulatory role in the immune system. Four polymorphisms in the GR gene are associated with differences in glucocorticoid (GC) sensitivity; the minor alleles of the polymorphisms N363 S and BclI are associated with relative hypersensitivity to GCs, while those of the polymorphisms ER22/23EK and 9β are associated with relative GC resistance. Because differences in GC sensitivity may influence immune effector functions, we examined whether these polymorphisms are associated with the susceptibility to develop Rheumatoid Arthritis (RA) and RA disease severity.  相似文献   
54.
The purpose of this study is to investigate (1) the induction of epigenetic effects in the crustacean Daphnia magna using DNA methylation as an epigenetic mark and (2) the potential stable transfer of such an epigenetic effect to non-exposed subsequent generations. Daphnids were exposed to chemical substances known to affect DNA methylation in mammals: vinclozolin, 5-azacytidine, 2′-deoxy-5-azacytidine, genistein and biochanin A. Effects on overall DNA cytosine methylation, body length and reproduction were evaluated in 21 day experiments. Using a multi-generational experimental design these endpoints were also evaluated in the F1 and F2 generation of both exposed and non-exposed offspring from F0 daphnids exposed to 5-azacytidine, genistein or vinclozolin. A reduction in DNA methylation was consistently observed in daphnids exposed to vinclozolin and 5-azacytidine. Only in organisms exposed to 5-azacytidine was this effect transferred to the two subsequent non-exposed generations. A concurrent reduction in body length at day 7 was observed in these treatments. For the first time, exposure to environmental chemicals was shown to affect DNA methylation in the parental generation of D. magna. We also demonstrated a transgenerational alteration in an epigenetic system in D. magna, which indicates the possibility of transgenerational inheritance of environment-induced epigenetic changes in non-exposed subsequent generations.  相似文献   
55.
An old question about regeneration is whether it is an ancestral character which is a general property of living matter, or whether it represents a set of specific adaptations to the different circumstances faced by different types of animal. In this review, some recent results on regeneration are assessed to see if they can throw any new light on this question. Evidence in favour of an ancestral character comes from the role of Wnt and bone morphogenetic protein signalling in controlling the pattern of whole‐body regeneration in acoels, which are a basal group of bilaterian animals. On the other hand, there is some evidence for adaptive acquisition or maintenance of the regeneration of appendages based on the occurrence of severe non‐lethal predation, the existence of some novel genes in regenerating organisms, and differences at the molecular level between apparently similar forms of regeneration. It is tentatively concluded that whole‐body regeneration is an ancestral character although has been lost from most animal lineages. Appendage regeneration is more likely to represent a derived character resulting from many specific adaptations.  相似文献   
56.
Over the past decades a growing body of literature has presented proof of the possible interactions between foliar and root herbivores. These effects can be positive, negative or neutral in either direction, depending on the species and the involved mechanism. Most of these studies however concern experiments under controlled conditions. Whether these interactions affect the distribution of herbivores under natural conditions still largely remains an open question. This study examined interactions between root feeding nematodes and shoot feeding aphids on Ammophila arenaria in the laboratory. We subsequently addressed the question whether expectations from this experiment are reflected in correlations between plant related variables and the abundance of both herbivores in the field. We demonstrated that nematodes and aphids can negatively affect each other in a controlled microcosm. In the field however no significant correlations between nematode and aphid abundances could be detected. There, shorter plants with a more vital leaf set and a higher root density supported the highest numbers of aphids. Plants with a lower root density and higher root vitality held more migratory endoparasitic nematodes, while more nematode cysts were found among roots with a low vitality. A certain plant property can furthermore affect above‐ and belowground herbivores in the opposite direction, such as root density in this case. This study suggests that effects of root herbivores on foliar herbivores or vice versa seem to be blurred in a field situation where other variables related to plant vitality and water content structure the herbivore populations. Therefore, caution should be used in generalising the prevalence of these interactions between the above‐ and belowground fauna, based solely on laboratory experiments.  相似文献   
57.

Background  

After amputation of the Xenopus tadpole tail, a functionally competent new tail is regenerated. It contains spinal cord, notochord and muscle, each of which has previously been shown to derive from the corresponding tissue in the stump. The regeneration of the neural crest derivatives has not previously been examined and is described in this paper.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号