首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   253篇
  免费   25篇
  国内免费   1篇
  279篇
  2022年   2篇
  2017年   2篇
  2016年   4篇
  2014年   2篇
  2013年   7篇
  2012年   9篇
  2011年   15篇
  2010年   6篇
  2009年   5篇
  2008年   10篇
  2007年   8篇
  2006年   5篇
  2005年   23篇
  2004年   13篇
  2002年   9篇
  2001年   8篇
  2000年   3篇
  1999年   4篇
  1995年   2篇
  1994年   4篇
  1992年   6篇
  1991年   11篇
  1990年   13篇
  1989年   8篇
  1988年   10篇
  1987年   4篇
  1986年   4篇
  1985年   7篇
  1984年   9篇
  1983年   3篇
  1982年   4篇
  1981年   4篇
  1980年   5篇
  1978年   4篇
  1977年   6篇
  1976年   2篇
  1975年   3篇
  1973年   2篇
  1971年   2篇
  1968年   2篇
  1967年   3篇
  1966年   1篇
  1965年   6篇
  1964年   1篇
  1942年   1篇
  1940年   3篇
  1927年   2篇
  1918年   1篇
  1917年   1篇
  1902年   1篇
排序方式: 共有279条查询结果,搜索用时 15 毫秒
111.
112.
113.
The hypothetical protein C7orf24 has been implicated as a cancer marker with a potential role in cell proliferation. We have identified C7orf24 as gamma-glutamyl cyclotransferase (GGCT) that catalyzes the formation of 5-oxoproline (pyroglutamic acid) from gamma-glutamyl dipeptides and potentially plays a significant role in glutathione homeostasis. In the present study we have identified the first cDNA clones encoding a gamma-glutamyl cyclotransferase. The GGCT gene is located on chromosome 7p14-15 and consists of four exons that span 8 kb. The primary sequence is 188 amino acids in length and is unlike any protein of known function. We crystallized functional recombinant gamma-glutamyl cyclotransferase and determined its structure at 1.7 A resolution. The enzyme is a dimer of 20,994-Da subunits. The topology of GGCT is unrelated to other enzymes associated with cyclotransferase-like activity. The fold was originally classified as "BtrG-like," a small family that only includes structures of hypothetical proteins from Mus musculus, Escherichia coli, Pyrococcus horikoshii, and Arabidopsis thaliana. Since this is the first member of this family with a defined function, we propose to refer to this structure as the gamma-glutamyl cyclotransferase fold. We have identified a potential active site pocket that contains a highly conserved glutamic acid (Glu(98)) and propose that it acts as a general acid/base in the reaction mechanism. Mutation of Glu(98) to Ala or Gln completely inactivates the enzyme without altering the overall fold.  相似文献   
114.
The Omega class glutathione transferase GSTO1-1 can catalyze the reduction of pentavalent methylated arsenic species and is responsible for the biotransfomation of potentially toxic alpha-haloketones. We investigated the cause of GSTO1-1 deficiency in the T-47D breast cancer cell line and found that the cell line is hemizygous for a polymorphic allele that encodes the deletion of Glu155. Northern and Western blots show that T-47D cells contain GSTO1 mRNA but no GSTO1-1 protein suggesting that the deletion of Glu155 causes GSTO1-1 deficiency in vivo. In further support of this contention we found that lymphoblastoid cell lines from subjects who are heterozygous for the deletion of Glu155 have only 60% of normal activity with the GSTO1-1 specific substrate 4-nitrophenacyl glutathione. Pulse-chase studies showed that the deletion of Glu155 causes increased turnover of GSTO1-1 in T47-D cells. These data establish the fact that the polymorphic deletion of Glu155 can cause GSTO1-1 deficiency in vivo. GSTO1-1 expression is elevated in some cell lines that are resistant to the cytotoxic cancer drugs adriamycin, etoposide and cisplatinum but its specific contribution to multi drug resistance has not been evaluated. In this study GSTO1-1 deficient T47-D cells were used to determine if GSTO1-1 contributes directly to arsenic and drug resistance. We established stable expression of normal GSTO1-1 in T-47D cells and found that this did not alter sensitivity to arsenic trioxide, cisplatinum daunorubicin or etoposide.  相似文献   
115.
Steady state, pre-steady state kinetic experiments, and site-directed mutagenesis have been used to dissect the catalytic mechanism of human glutathione transferase T2-2 with 1-menaphthyl sulfate as co-substrate. This enzyme is close to the ancestral precursor of the more recently evolved glutathione transferases belonging to Alpha, Pi, and Mu classes. The enzyme displays a random kinetic mechanism with very low k(cat) and k(cat)/K(m)((GSH)) values and with a rate-limiting step identified as the product release. The chemical step, which is fast and causes product accumulation before the steady state catalysis, strictly depends on the deprotonation of the bound GSH. Replacement of Arg-107 with Ala dramatically affects the fast phase, indicating that this residue is crucial both in the activation and orientation of GSH in the ternary complex. All pre-steady state and steady state kinetic data were convincingly fit to a kinetic mechanism that reflects a quite primordial catalytic efficiency of this enzyme. It involves two slowly interconverting or not interconverting enzyme populations (or active sites of the dimeric enzyme) both able to bind and activate GSH and strongly inhibited by the product. Only one population or subunit is catalytically competent. The proposed mechanism accounts for the apparent half-site behavior of this enzyme and for the apparent negative cooperativity observed under steady state conditions. These findings also suggest some evolutionary strategies in the glutathione transferase family that have been adopted for the optimization of the catalytic activity, which are mainly based on an increased flexibility of critical protein segments and on an optimal orientation of the substrate.  相似文献   
116.
The ubiquitous glutathione transferases (GSTs) catalyze glutathione conjugation to many compounds and have other diverse functions that continue to be discovered. We noticed sequence similarities between Omega class GSTs and a nuclear chloride channel, NCC27 (CLIC1), and show here that NCC27 belongs to the GST structural family. The structural homology prompted us to investigate whether the human Omega class glutathione transferase GSTO1-1 forms or modulates ion channels. We find that GSTO1-1 modulates ryanodine receptors (RyR), which are calcium channels in the endoplasmic reticulum of various cells. Cardiac RyR2 activity was inhibited by GSTO1-1, whereas skeletal muscle RyR1 activity was potentiated. An enzymatically active conformation of GSTO1-1 was required for inhibition of RyR2, and mutation of the active site cysteine (Cys-32 --> Ala) abolished the inhibitory activity. We propose a novel role for GSTO1-1 in protecting cells containing RyR2 from apoptosis induced by Ca(2+) mobilization from intracellular stores.  相似文献   
117.
A new class of glutathione transferases has been discovered by analysis of the expressed sequence tag data base and sequence alignment. Glutathione S-transferases (GSTs) of the new class, named Omega, exist in several mammalian species and Caenorhabditis elegans. In humans, GSTO 1-1 is expressed in most tissues and exhibits glutathione-dependent thiol transferase and dehydroascorbate reductase activities characteristic of the glutaredoxins. The structure of GSTO 1-1 has been determined at 2.0-A resolution and has a characteristic GST fold (Protein Data Bank entry code ). The Omega class GSTs exhibit an unusual N-terminal extension that abuts the C terminus to form a novel structural unit. Unlike other mammalian GSTs, GSTO 1-1 appears to have an active site cysteine that can form a disulfide bond with glutathione.  相似文献   
118.
Exotic plant invasions alter ecosystem properties and threaten ecosystem functions globally. Interannual climate variability (ICV) influences both plant community composition (PCC) and soil properties, and interactions between ICV and PCC may influence nitrogen (N) and carbon (C) pools. We asked how ICV and non-native annual grass invasion covary to influence soil and plant N and C in a semiarid shrubland undergoing widespread ecosystem transformation due to invasions and altered fire regimes. We sampled four progressive stages of annual grass invasion at 20 sites across a large (25,000 km2) landscape for plant community composition, plant tissue N and C, and soil total N and C in 2013 and 2016, which followed 2 years of dry and wet conditions, respectively. Multivariate analyses and ANOVAs showed that in invasion stages where native shrub and perennial grass and forb communities were replaced by annual grass-dominated communities, the ecosystem lost more soil N and C in wet years. Path analysis showed that high water availability led to higher herbaceous cover in all invasion stages. In stages with native shrubs and perennial grasses, higher perennial grass cover was associated with increased soil C and N, while in annual-dominated stages, higher annual grass cover was associated with losses of soil C and N. Also, soil total C and C:N ratios were more homogeneous in annual-dominated invasion stages as indicated by within-site standard deviations. Loss of native shrubs and perennial grasses and forbs coupled with annual grass invasion may lead to long-term declines in soil N and C and hamper restoration efforts. Restoration strategies that use innovative techniques and novel species to address increasing temperatures and ICV and emphasize maintaining plant community structure—shrubs, grasses, and forbs—will allow sagebrush ecosystems to maintain C sequestration, soil fertility, and soil heterogeneity.  相似文献   
119.
A manual threading approach is used to model the human glutathione transferase T1–1 based on the coordinates of the related Theta class enzyme T2–2. The low level of sequence identity (about 20%), found in the C-terminal extension in conjunction with a relative deletion of about five residues makes this a challenging modeling problem. The C-terminal extension contributes to the active site of the molecule and is thus of particular interest for understanding the molecular mechanism of the enzyme. Manual docking of known substrates and non-substrates has implicated potential candidates for the T1–1 catalytic residues involved in the dehalogenation and epoxide-ring opening activities. These include the conserved Theta class residues Arg 107, Trp 115, and the conserved GSTT1 subclass residue His 176. Also, the residue at position 234 is implicated in the modulation of T1–1 activity with different substrates between species. Proteins 33:444–454, 1998. © 1998 Wiley-Liss, Inc.  相似文献   
120.
隐球菌感染诊治专家共识   总被引:26,自引:7,他引:26  
1简介 隐球菌属在真菌分类学上归人半知菌亚门、芽孢菌纲、隐球酵母目、隐球酵母科,引起人类感染的隐球菌主要是新生隐球菌和格特隐球菌。两种隐球菌的无性繁殖体均为无菌丝的单芽孢酵母样菌,在体外为无荚膜或仅有小荚膜,进入人体内后很快形成厚荚膜,有荚膜的隐球菌菌体直径明显增加,致病力明显增强。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号