首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5120篇
  免费   540篇
  国内免费   6篇
  5666篇
  2022年   41篇
  2021年   63篇
  2020年   43篇
  2018年   87篇
  2017年   49篇
  2016年   97篇
  2015年   135篇
  2014年   147篇
  2013年   205篇
  2012年   239篇
  2011年   213篇
  2010年   139篇
  2009年   121篇
  2008年   191篇
  2007年   228篇
  2006年   202篇
  2005年   207篇
  2004年   185篇
  2003年   171篇
  2002年   166篇
  2001年   142篇
  2000年   180篇
  1999年   140篇
  1998年   75篇
  1997年   94篇
  1996年   65篇
  1995年   75篇
  1994年   49篇
  1993年   50篇
  1992年   78篇
  1991年   87篇
  1990年   94篇
  1989年   91篇
  1988年   79篇
  1987年   72篇
  1986年   76篇
  1985年   81篇
  1984年   70篇
  1983年   70篇
  1982年   50篇
  1981年   61篇
  1979年   56篇
  1978年   52篇
  1977年   49篇
  1976年   42篇
  1975年   51篇
  1974年   45篇
  1973年   49篇
  1972年   41篇
  1969年   43篇
排序方式: 共有5666条查询结果,搜索用时 15 毫秒
181.
Summary We have investigated muscarinic receptor-operated Ca2+ mobilization in a salivary epithelial cell line, HSG-PA, using an experimental approach which allows independent evaluation of intracellular Ca2+ release and extracellular Ca2+ entry. The carbachol (Cch) dose response of intracellular Ca2+ release indicates the involvement of a single, relatively low-affinity, muscarinic receptor site (K 0.510 or 30 m, depending on the method for [Ca2+] i determination). However, similar data for Ca2+ entry indicate the involvement of two Cch sites, one consistent with that associated with Ca2+ release and a second higher affinity site withK 0.52.5 m. In addition, the Ca2+ entry response observed at lower concentrations of Cch (2.5 m) was completely inhibited by membrane depolarization induced with high K+ (>55mm) or gramicidin D (1 m), while membrane depolarization had little or no effect on Ca2+ entry induced by 100 m Cch. Another muscarinic agonist, oxotremorine-M (100 m; Oxo-M), like Cch, also induced an increase in the [Ca2+] i of HSG-PA cells (from 72±2 to 104±5nm). This response was profoundly blocked (75%) by the inorganic Ca2+ channel blocker La3+ (25–50 m) suggesting that Oxo-M primarily mobilizes Ca2+ in these cells by increasing Ca2+ entry. Organic Ca2+ channel blockers (verapamil or diltiazem at 10 m, nifedipine at 1 m), had no effect on this response. The Oxo-M induced Ca2+ mobilization response, like that observed at lower doses of Cch, was markedly inhibited (70–90%) by membrane depolarization (high K+ or gramicidin D). At 100 m Cch the formation of inositol trisphosphate (IP3) was increased 55% above basal levels. A low concentration of carbachol (1 m) elicited a smaller change in IP3 formation (25%), similar to that seen with 100 m Oxo-M (20%). Taken together, these results suggest that there are two modes of muscarinic receptor-induced Ca2+ entry in HSG-PA cells. One is associated with IP3 formation and intracellular Ca2+ release and is independent of membrane potential; the other is less dependent on IP3 formation and intracellular Ca2+ release and is modulated by membrane potential. This latter pathway may exhibit voltage-dependent gating.  相似文献   
182.
The protein Id: a negative regulator of helix-loop-helix DNA binding proteins   总被引:261,自引:0,他引:261  
We have isolated a cDNA clone encoding a novel helix-loop-helix (HLH) protein, Id. Id is missing the basic region adjacent to the HLH domain that is essential for specific DNA binding in another HLH protein, MyoD. An in vitro translation product of Id can associate specifically with at least three HLH proteins (MyoD, E12, and E47) and attenuate their ability to bind DNA as homodimeric or heterodimeric complexes. Id is expressed at varying levels in all cell lines tested. In three cell lines that can be induced to undergo terminal differentiation, Id RNA levels decrease upon induction. Transfection experiments indicate that over-expression of Id inhibits the trans-activation of the muscle creatine kinase enhancer by MyoD. Based on these findings, we propose that HLH proteins lacking a basic region may negatively regulate other HLH proteins through the formation of nonfunctional heterodimeric complexes.  相似文献   
183.
The 2009-2010 influenza pandemic saw many people treated with antivirals and antibiotics. High proportions of both classes of drugs are excreted and enter wastewater treatment plants (WWTPs) in biologically active forms. To date, there has been no study into the potential for influenza pandemic-scale pharmaceutical use to disrupt WWTP function. Furthermore, there is currently little indication as to whether WWTP microbial consortia can degrade antiviral neuraminidase inhibitors when exposed to pandemic-scale doses. In this study, we exposed an aerobic granular sludge sequencing batch reactor, operated for enhanced biological phosphorus removal (EBPR), to a simulated influenza-pandemic dosing of antibiotics and antivirals for 8 weeks. We monitored the removal of the active form of Tamiflu(?), oseltamivir carboxylate (OC), bacterial community structure, granule structure and changes in EBPR and nitrification performance. There was little removal of OC by sludge and no evidence that the activated sludge community adapted to degrade OC. There was evidence of changes to the bacterial community structure and disruption to EBPR and nitrification during and after high-OC dosing. This work highlights the potential for the antiviral contamination of receiving waters and indicates the risk of destabilizing WWTP microbial consortia as a result of high concentrations of bioactive pharmaceuticals during an influenza pandemic.  相似文献   
184.
In humans, thromboxane (TX) A(2) signals through the TPα and TPβ isoforms of the TXA(2) receptor or TP. Here, the RhoA effector protein kinase C-related kinase (PRK) 1 was identified as an interactant of both TPα and ΤPβ involving common and unique sequences within their respective C-terminal (C)-tail domains and the kinase domain of PRK1 (PRK1(640-942)). Although the interaction with PRK1 is constitutive, agonist activation of TPα/TPβ did not regulate the complex per se but enhanced PRK1 activation leading to phosphorylation of its general substrate histone H1 in vitro. Altered PRK1 and TP expression and signaling are increasingly implicated in certain neoplasms, particularly in androgen-associated prostate carcinomas. Agonist activation of TPα/TPβ led to phosphorylation of histone H3 at Thr(11) (H3 Thr(11)), a previously recognized specific marker of androgen-induced chromatin remodeling, in the prostate LNCaP and PC-3 cell lines but not in primary vascular smooth muscle or endothelial cells. Moreover, this effect was augmented by dihydrotestosterone in androgen-responsive LNCaP but not in nonresponsive PC-3 cells. Furthermore, PRK1 was confirmed to constitutively interact with TPα/TPβ in both LNCaP and PC-3 cells, and targeted disruption of PRK1 impaired TPα/TPβ-mediated H3 Thr(11) phosphorylation in, and cell migration of, both prostate cell types. Collectively, considering the role of TXA(2) as a potent mediator of RhoA signaling, the identification of PRK1 as a bona fide interactant of TPα/TPβ, and leading to H3 Thr(11) phosphorylation to regulate cell migration, has broad functional significance such as within the vasculature and in neoplasms in which both PRK1 and the TPs are increasingly implicated.  相似文献   
185.
The effects of hypophysectomy and gonadotropin replacement on transepithelial movement of 3H-androgen in the rat epididymis were examined by in vivo microperifusion of 3H-testosterone followed by in vivo micropuncture to obtain peritubular and intraluminal fluid. In the caput epididymidis of normal rats, intraluminal 3H-androgen concentrations were approximately 300% of those in the interstitial space. In contrast, proluminal movement of 3H-androgen into rat caput epididymal tubules was significantly decreased 10 days after hypophysectomy. 3H-Testosterone movement across the caput epididymal epithelium was completely returned to normal by supplementation with 24 micrograms/day follicle-stimulating hormone (FSH) or 24 micrograms/day luteinizing hormone (LH). However, neither 0.12 micrograms/day FSH nor 250 micrograms/day prolactin returned proluminal androgen movement to normal. It is speculated that epididymal uptake of peritubular testosterone is mediated by androgen-binding protein, which is known to be secreted by Sertoli cells after stimulation by FSH or testosterone.  相似文献   
186.
Several epidemiological and preclinical studies suggest that non‐steroidal anti‐inflammatory drugs (NSAIDs), which inhibit cyclooxygenase (COX), reduce the risk of Alzheimer's disease (AD) and can lower β‐amyloid (Aβ) production and inhibit neuroinflammation. However, follow‐up clinical trials, mostly using selective cyclooxygenase (COX)‐2 inhibitors, failed to show any beneficial effect in AD patients with mild to severe cognitive deficits. Recent data indicated that COX‐1, classically viewed as the homeostatic isoform, is localized in microglia and is actively involved in brain injury induced by pro‐inflammatory stimuli including Aβ, lipopolysaccharide, and interleukins. We hypothesized that neuroinflammation is critical for disease progression and selective COX‐1 inhibition, rather than COX‐2 inhibition, can reduce neuroinflammation and AD pathology. Here, we show that treatment of 20‐month‐old triple transgenic AD (3 × Tg‐AD) mice with the COX‐1 selective inhibitor SC‐560 improved spatial learning and memory, and reduced amyloid deposits and tau hyperphosphorylation. SC‐560 also reduced glial activation and brain expression of inflammatory markers in 3 × Tg‐AD mice, and switched the activated microglia phenotype promoting their phagocytic ability. The present findings are the first to demonstrate that selective COX‐1 inhibition reduces neuroinflammation, neuropathology, and improves cognitive function in 3 × Tg‐AD mice. Thus, selective COX‐1 inhibition should be further investigated as a potential therapeutic approach for AD.  相似文献   
187.
Disruption of epithelial barrier by proinflammatory cytokines such as IFN-gamma represents a major pathophysiological consequence of intestinal inflammation. We have previously shown that IFN-gamma increases paracellular permeability in model T84 epithelial cells by inducing endocytosis of tight junction (TJ) proteins occludin, JAM-A, and claudin-1. The present study was designed to dissect mechanisms of IFN-gamma-induced endocytosis of epithelial TJ proteins. IFN-gamma treatment of T84 cells resulted in internalization of TJ proteins into large actin-coated vacuoles that originated from the apical plasma membrane and resembled the vacuolar apical compartment (VAC) previously observed in epithelial cells that lose cell polarity. The IFN-gamma dependent formation of VACs required ATPase activity of a myosin II motor but was not dependent on rapid turnover of F-actin. In addition, activated myosin II was observed to colocalize with VACs after IFN-gamma exposure. Pharmacological analyses revealed that formation of VACs and endocytosis of TJ proteins was mediated by Rho-associated kinase (ROCK) but not myosin light chain kinase (MLCK). Furthermore, IFN-gamma treatment resulted in activation of Rho GTPase and induced expressional up-regulation of ROCK. These results, for the first time, suggest that IFN-gamma induces endocytosis of epithelial TJ proteins via RhoA/ROCK-mediated, myosin II-dependent formation of VACs.  相似文献   
188.
Angiotensin-converting enzyme-2 (ACE2) is a critical regulator of heart function and a cellular receptor for the causative agent of severe-acute respiratory syndrome (SARS), SARS-CoV (coronavirus). ACE2 is a type I transmembrane protein, with an extracellular N-terminal domain containing the active site and a short intracellular C-terminal tail. A soluble form of ACE2, lacking its cytosolic and transmembrane domains, has been shown to block binding of the SARS-CoV spike protein to its receptor. In this study, we examined the ability of ACE2 to undergo proteolytic shedding and investigated the mechanisms responsible for this shedding event. We demonstrated that ACE2, heterologously expressed in HEK293 cells and endogenously expressed in Huh7 cells, undergoes metalloproteinase-mediated, phorbol ester-inducible ectodomain shedding. By using inhibitors with differing potency toward different members of the ADAM (a disintegrin and metalloproteinase) family of proteases, we identified ADAM17 as a candidate mediator of stimulated ACE2 shedding. Furthermore, ablation of ADAM17 expression using specific small interfering RNA duplexes reduced regulated ACE2 shedding, whereas overexpression of ADAM17 significantly increased shedding. Taken together, these data provided direct evidence for the involvement of ADAM17 in the regulated ectodomain shedding of ACE2. The identification of ADAM17 as the protease responsible for ACE2 shedding may provide new insight into the physiological roles of ACE2.  相似文献   
189.
The Drosophila melanogaster YA protein is a maternally provided nuclear lamina component that is essential during the transition from meiosis to mitosis at the beginning of embryogenesis. Localization of YA to the nuclear envelope is required for its function; this localization is cell cycle-dependent during embryogenesis. Here we show that the ability of YA to enter nuclei is modulated during development. In developing egg chambers, YA protein is made but excluded from nuclei of nurse cells and oocytes; upon egg activation, YA acquires the ability to enter nuclei and becomes incorporated into the nuclear lamina in unfertilized eggs and embryos. This localization switch correlates with changes in the phosphorylation state of YA. YA in ovaries is hyperphosphorylated relative to YA in unfertilized eggs and embryos. Through site-directed mutagenesis, we identified 443T, a potential phosphorylation site for both cyclin-dependent protein kinase and mitogen-activated-protein kinase, as one of the sites likely involved in this developmental control. Our results suggest that phosphorylation plays a role in modulating the localization of YA during development. A model for developmental regulation of the nuclear entry of YA is proposed and implications for understanding Drosophila egg activation are discussed.  相似文献   
190.
Synthetic peptides corresponding to regions within the amino-terminal domains of the core histones H2A, H2B, H3, and H4, in which epsilon-acetyllysine has been substituted for selected lysines, have been used to raise polyclonal antisera in rabbits. Such antisera can be specific not only for individual acetylated histones but also for histone isoforms acetylated at particular lysine residues. In this article, we describe procedures for the preparation, affinity purification, and initial characterization of site-specific antisera to acetylated histones.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号