首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   297篇
  免费   26篇
  2022年   3篇
  2021年   9篇
  2020年   10篇
  2019年   9篇
  2018年   9篇
  2017年   4篇
  2016年   10篇
  2015年   17篇
  2014年   8篇
  2013年   9篇
  2012年   12篇
  2011年   6篇
  2010年   9篇
  2009年   4篇
  2008年   5篇
  2007年   11篇
  2006年   13篇
  2005年   9篇
  2004年   5篇
  2003年   7篇
  2002年   9篇
  2001年   5篇
  2000年   10篇
  1999年   6篇
  1998年   10篇
  1997年   5篇
  1996年   5篇
  1995年   8篇
  1994年   5篇
  1993年   10篇
  1992年   8篇
  1991年   6篇
  1990年   5篇
  1989年   13篇
  1988年   6篇
  1987年   7篇
  1986年   2篇
  1984年   4篇
  1983年   3篇
  1981年   4篇
  1978年   2篇
  1977年   2篇
  1973年   2篇
  1970年   5篇
  1967年   1篇
  1957年   1篇
  1954年   1篇
  1951年   1篇
  1944年   2篇
  1941年   2篇
排序方式: 共有323条查询结果,搜索用时 91 毫秒
231.
232.
Metals and microorganisms: A problem of definition   总被引:12,自引:0,他引:12  
  相似文献   
233.
234.
235.
A high demand for functional bone grafts is being observed worldwide, especially due to the increased life expectancy. Osteoinductive components should be incorporated into functional bone grafts, accelerating cell recruitment, cell proliferation, angiogenesis, and new bone formation at a defect site. Noncollagenous bone matrix proteins, especially osteopontin (OPN) and osteocalcin (OC), have been reported to regulate some physiological process, such as cell migration and bone mineralization. However, the effects of OPN and OC on cell proliferation, osteogenic differentiation, mineralization, and angiogenesis are still undefined. Therefore, we assessed the exogenous effect of OPN and OC supplementation on human bone marrow mesenchymal stem/stromal cells (hBM MSC) proliferation and osteogenic differentiation. OPN dose-dependently increased the proliferation of hBM MSC, as well as improved the angiogenic properties of human umbilical vein endothelial cells (HUVEC) by increasing the capillary-like tube formation in vitro. On the other hand, OC enhanced the differentiation of hBM MSC into osteoblasts and demonstrated an increase in extracellular calcium levels and alkaline phosphatase activity, as well as higher messenger RNA levels of mature osteogenic markers osteopontin and osteocalcin. In vivo assessment of OC/OPN-enhanced scaffolds in a critical-sized defect rabbit long-bone model revealed no infection, while new bone was being formed. Taken together, these results suggest that OC and OPN stimulate bone regeneration by inducing stem cell proliferation, osteogenesis and by enhancing angiogenic properties. The synergistic effect of OC and OPN observed in this study can be applied as an attractive strategy for bone regeneration therapeutics by targeting different vital cellular processes.  相似文献   
236.
Fungal–mineral interactions can produce large amounts of biogenic nano-size (~ 1–100 nm) minerals, yet their influence on fungal physiology and growth remains largely unexplored. Using Trichoderma guizhouense NJAU4742 and magnetite (Mt) as a model fungus and mineral system, we have shown for the first time that biogenic Mt nanoparticles formed during fungal–mineral cultivation exhibit intrinsic peroxidase-like activity. Specifically, the average peroxidase-like activity of Mt nanoparticles after 72 h cultivation was ~ 2.4 times higher than that of the original Mt. Evidence from high resolution X-ray photoelectron spectroscopy analyses indicated that the unique properties of magnetite nanoparticles largely stemmed from their high proportion of surface non-lattice oxygen, through occupying surface oxygen-vacant sites, rather than Fe redox chemistry, which challenges conventional Fenton reaction theories that assume iron to be the sole redox-active centre. Nanoscale secondary ion mass spectrometry with a resolution down to 50 nm demonstrated that a thin (< 1 μm) oxygen-film was present on the surface of fungal hyphae. Furthermore, synchrotron radiation-based micro-FTIR spectra revealed that surface oxygen groups corresponded mainly to organic OH, mineral OH and carbonyl groups. Together, these findings highlight an important, but unrecognized, catalytic activity of mineral nanoparticles produced by fungal–mineral interactions and contribute substantially to our understanding of mineral nanoparticles in natural ecosystems.  相似文献   
237.
Monazite is a naturally occurring lanthanide (Ln) phosphate mineral [Ln x(PO4) y] and is the main industrial source of the rare earth elements (REE), cerium and lanthanum. Endeavours to ensure the security of supply of elements critical to modern technologies view bioprocessing as a promising alternative or adjunct to new methods of element recovery. However, relatively little is known about microbial interactions with REE. Fungi are important geoactive agents in the terrestrial environment and well known for properties of mineral transformations, particularly phosphate solubilization. Accordingly, this research examined the capability of a ubiquitous geoactive soil fungus, Aspergillus niger, to affect the mobility of REE in monazite and identify possible mechanisms for biorecovery. It was found that A. niger could grow in the presence of monazite and mediated the formation of secondary Ce and La-containing biominerals with distinct morphologies including thin sheets, orthorhombic tablets, acicular needles, and rosette aggregates which were identified as cerium oxalate decahydrate (Ce2(C2O4)3·10H2O) and lanthanum oxalate decahydrate (La2(C2O4)3·10H2O). In order to identify a means for biorecovery of REE via oxalate precipitation the bioleaching and bioprecipitation potential of biomass-free spent culture supernatants was investigated. Although such indirect bioleaching of REE was low from the monazite with maximal lanthanide release reaching >40 mg L−1, leached REE were efficiently precipitated as Ce and La oxalates of high purity, and did not contain Nd, Pr and Ba, present in the original monazite. Geochemical modelling of the speciation of oxalates and phosphates in the reaction system confirmed that pure Ln oxalates can be formed under a wide range of chemical conditions. These findings provide fundamental knowledge about the interactions with and biotransformation of REE present in a natural mineral resource and indicate the potential of oxalate bioprecipitation as a means for efficient biorecovery of REE from solution.  相似文献   
238.
Fungi are agents of geochemical change in the environment and play important roles in the soil, the plant-root zone, and in rock and mineral habitats. Modelling may serve as a tool to quantify fungal weathering under natural conditions. This paper provides a review of existing mycelial growth models and examines how these can be adapted to describe weathering by ectomycorrhizal and other fungi in mineral soil.  相似文献   
239.
The mitochondrial Ca(2+)-independent phospholipase A(2) is activated during energy-dependent Ca(2+) accumulation under conditions where there is a sustained depression of the membrane potential. This activation is not dependent on induction of the mitochondrial permeability transition. Bromoenol lactone, which inhibits the phospholipase, is effective as an inhibitor of the transition, and this action can be overcome by low levels of exogenous free fatty acids. Apparently, activation of the Ca(2+)-independent phospholipase is a factor in the mechanisms by which depolarization and Ca(2+) accumulation promote opening of the permeability transition pore. Sustained activity of the Ca(2+)-independent phospholipase A(2) promotes rupture of the outer mitochondrial membrane and spontaneous release of cytochrome c on a time scale similar to that of apoptosis occurring in cells. However, more swelling of the matrix space must occur to provoke release of a given cytochrome c fraction when the enzyme is active, compared with when it is inhibited. Through its effects on the permeability transition and release of intermembrane space proteins, the mitochondrial Ca(2+)-independent phospholipase A(2) may be an important factor governing cell death caused by necrosis or apoptosis.  相似文献   
240.
Human genetic and animal studies have implicated the costimulatory molecule CD40 in the development of multiple sclerosis (MS). We investigated the cell specific gene and protein expression variation controlled by the CD40 genetic variant(s) associated with MS, i.e. the T-allele at rs1883832. Previously we had shown that the risk allele is expressed at a lower level in whole blood, especially in people with MS. Here, we have defined the immune cell subsets responsible for genotype and disease effects on CD40 expression at the mRNA and protein level. In cell subsets in which CD40 is most highly expressed, B lymphocytes and dendritic cells, the MS-associated risk variant is associated with reduced CD40 cell-surface protein expression. In monocytes and dendritic cells, the risk allele additionally reduces the ratio of expression of full-length versus truncated CD40 mRNA, the latter encoding secreted CD40. We additionally show that MS patients, regardless of genotype, express significantly lower levels of CD40 cell-surface protein compared to unaffected controls in B lymphocytes. Thus, both genotype-dependent and independent down-regulation of cell-surface CD40 is a feature of MS. Lower expression of a co-stimulator of T cell activation, CD40, is therefore associated with increased MS risk despite the same CD40 variant being associated with reduced risk of other inflammatory autoimmune diseases. Our results highlight the complexity and likely individuality of autoimmune pathogenesis, and could be consistent with antiviral and/or immunoregulatory functions of CD40 playing an important role in protection from MS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号