首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1088篇
  免费   72篇
  国内免费   2篇
  1162篇
  2024年   3篇
  2023年   6篇
  2022年   15篇
  2021年   27篇
  2020年   9篇
  2019年   16篇
  2018年   34篇
  2017年   22篇
  2016年   33篇
  2015年   45篇
  2014年   52篇
  2013年   84篇
  2012年   89篇
  2011年   101篇
  2010年   46篇
  2009年   48篇
  2008年   71篇
  2007年   53篇
  2006年   57篇
  2005年   64篇
  2004年   59篇
  2003年   49篇
  2002年   31篇
  2001年   16篇
  2000年   20篇
  1999年   14篇
  1998年   9篇
  1997年   9篇
  1996年   4篇
  1995年   6篇
  1994年   2篇
  1993年   7篇
  1992年   5篇
  1991年   13篇
  1990年   4篇
  1989年   10篇
  1988年   1篇
  1987年   6篇
  1986年   4篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   5篇
  1981年   2篇
  1980年   2篇
  1974年   2篇
  1972年   1篇
  1971年   1篇
排序方式: 共有1162条查询结果,搜索用时 15 毫秒
121.
Friend spleen focus-forming virus (SFFV) codes for a transport-defective envelope glycoprotein designated gp52, which is responsible for the leukemogenic properties of the virus. gp52 is a monotopic integral membrane protein anchored in the membrane by a stretch of hydrophobic amino acid residues located near the carboxy terminus of the molecule. We have constructed a mutant SFFV envelope gene in which the sequences that code for the hydrophobic membrane-spanning domain have been deleted, and we expressed this gene by using recombinant vaccinia virus vectors or retroviral vectors. The mutant SFFV envelope gene was found to encode a truncated glycoprotein (gp52t) which was also transport defective; a majority of gp52t remained cell associated, while a small proportion of the molecules underwent oligosaccharide processing. The processed form of gp52t was secreted from the cells. Retroviral vectors carrying the mutant SFFV envelope gene were found to be nonpathogenic in adult mice. These results indicate that the hydrophobic membrane-spanning region of gp52 is required for pathogenicity of SFFV and suggest that these sequences may play a role in signal transduction. The results also indicate that the transport defect of SFFV gp52 is due to structural features of the ectodomain of the molecule.  相似文献   
122.
The tropane alkaloid (TA) scopolamine is suggested to protect Brugmansia suaveolens (Solanaceae) against herbivorous insects. To test this prediction in a natural environment, scopolamine was induced by methyl jasmonate (MJ) in potted plants which were left 10?days in the field. MJ-treated plants increased their scopolamine concentration in leaves and herbivory decreased. These findings suggest a cause?Ceffect relationship. However, experiments in laboratory showed that scopolamine affect differently the performance of the specialist larvae of the ithomiine butterfly Placidina euryanassa (C. Felder & R. Felder) and the generalist fall armyworm Spodoptera frugiperda (J. E. Smith): the specialist that sequester this TA from B. suaveolens leaves was not negatively affected, but the generalist was. Therefore, scopolamine probably acts only against insects that are not adapted to TAs. Other compounds that are MJ elicited may also play a role in plant resistance against herbivory by generalist and specialist insects, and deserve future investigations.  相似文献   
123.
As an ancient segmental tetraploid, the maize (Zea mays L.) genome contains large numbers of paralogs that are expected to have diverged by a minimum of 10% over time. Nearly identical paralogs (NIPs) are defined as paralogous genes that exhibit > or = 98% identity. Sequence analyses of the "gene space" of the maize inbred line B73 genome, coupled with wet lab validation, have revealed that, conservatively, at least approximately 1% of maize genes have a NIP, a rate substantially higher than that in Arabidopsis. In most instances, both members of maize NIP pairs are expressed and are therefore at least potentially functional. Of evolutionary significance, members of many NIP families also exhibit differential expression. The finding that some families of maize NIPs are closely linked genetically while others are genetically unlinked is consistent with multiple modes of origin. NIPs provide a mechanism for the maize genome to circumvent the inherent limitation that diploid genomes can carry at most two "alleles" per "locus." As such, NIPs may have played important roles during the evolution and domestication of maize and may contribute to the success of long-term selection experiments in this important crop species.  相似文献   
124.
125.
The number and distribution of lipid molecules, including cholesterol in particular, in the plasma membrane, may play a key role in regulating several physiological processes in cells. We investigated the role of membrane cholesterol in regulating cell shape, adhesion and motility. The acute depletion of cholesterol from the plasma membrane of cells that were well spread and motile on fibronectin caused the rounding of these cells and decreased their adhesion to and motility on fibronectin. These modifications were less pronounced in cells plated on laminin, vitronectin or plastic, indicating that cholesterol-mediated changes in adhesion and motility are more specific for adhesion mediated by fibronectin-specific integrins, such as alpha5beta1. These changes were accompanied by remodeling of the actin cytoskeleton, the spatial reorganization of paxillin in the membrane, and changes to the dynamics of alpha5 integrin and paxillin-rich focal adhesions. Levels of tyrosine phosphorylation at position 576/577 of FAK and Erk1/Erk2 MAP-kinase activity levels were both lower in cholesterol-depleted than in control cells. These levels normalized only on fibronectin when cholesterol was reincorporated into the cell membrane. Thus, membrane cholesterol content has a specific effect on certain signaling pathways specifically involved in regulating cell motility on fibronectin and organization of the actin cytoskeleton.  相似文献   
126.
Giardiavirus (GLV) utilizes an internal ribosome entry site (IRES) for translation initiation in the early branching eukaryote Giardia lamblia. Unlike most of the viral IRESs among higher eukaryotes, which localize primarily within the 5′-untranslated region (UTR), the GLV IRES comprises 253 nts of 5′UTR and the initial 264 nts in the open-reading-frame (ORF). To test if GLV IRES also functions in higher eukaryotic systems, we examined it in rabbit reticulocyte lysate (RRL) and found that it functions much less efficiently than the IRES from the Encephalomyocarditis virus (EMCV) or Cricket paralysis virus (CrPV). In contrast, both EMCV-IRES and CrPV-IRESs were inactive in transfected Giardia cells. Structure-function analysis indicated that only the stem-loop U5 from the 5′UTR and the stem-loop I plus the downstream box (Dbox) from the ORF of GLV IRES are required for limited IRES function in RRL. Edeine, a translation initiation inhibitor, did not significantly affect the function of GLV IRES in either RRL or Giardia, indicating that a pre-initiation complex is not required for GLV IRES–mediated translation initiation. However, the small ribosomal subunit purified from Giardia did not bind to GLV IRES, indicating that additional protein factors may be necessary. A member of the helicase family IBP1 and two known viral IRES binding proteins La autoantigen and SRp20 have been identified in Giardia that bind to GLV IRES in vitro. These three proteins could be involved in facilitating small ribosome recruitment for initiating translation.  相似文献   
127.
Cation-aromatic database   总被引:1,自引:0,他引:1  
Reddy AS  Sastry GM  Sastry GN 《Proteins》2007,67(4):1179-1184
Cation-aromatic database (CAD) is a publicly available web-based database that aims to provide further understanding of interaction between a cation and the pi interactions. A tool to identify the interactions in a user-given protein is also added to the database. CAD is freely accessible via the Internet at http://203.199.182.73/gnsmmg/databases/cad/.  相似文献   
128.
Muscular dystrophies (MDs) such as Duchenne muscular dystrophy (DMD), sarcoglycanopathy (Sgpy) and dysferlinopathy (Dysfy) are recessive genetic neuromuscular diseases that display muscle degeneration. Although these MDs have comparable endpoints of muscle pathology, the onset, severity and the course of these diseases are diverse. Different mechanisms downstream of genetic mutations might underlie the disparity in these pathologies. We surmised that oxidative damage and altered antioxidant function might contribute to these differences. The oxidant and antioxidant markers in the muscle biopsies from patients with DMD (n = 15), Sgpy (n = 15) and Dysfy (n = 15) were compared to controls (n = 10). Protein oxidation and lipid peroxidation was evident in all MDs and correlated with the severity of pathology, with DMD, the most severe dystrophic condition showing maximum damage, followed by Sgpy and Dysfy. Oxidative damage in DMD and Sgpy was attributed to the depletion of glutathione (GSH) and lowered antioxidant activities while loss of GSH peroxidase and GSH-S-transferase activities was observed in Dysfy. Lower GSH level in DMD was due to lowered activity of gamma-glutamyl cysteine ligase, the rate limiting enzyme in GSH synthesis. Similar analysis in cardiotoxin (CTX) mouse model of MD showed that the dystrophic muscle pathology correlated with GSH depletion and lipid peroxidation. Depletion of GSH prior to CTX exposure in C2C12 myoblasts exacerbated oxidative damage and myotoxicity. We deduce that the pro and anti-oxidant mechanisms could be correlated to the severity of MD and might influence the dystrophic pathology to a different extent in various MDs. On a therapeutic note, this could help in evolving novel therapies that offer myoprotection in MD.  相似文献   
129.
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号