首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1084篇
  免费   72篇
  国内免费   2篇
  2024年   3篇
  2023年   5篇
  2022年   12篇
  2021年   27篇
  2020年   9篇
  2019年   16篇
  2018年   34篇
  2017年   22篇
  2016年   33篇
  2015年   45篇
  2014年   52篇
  2013年   84篇
  2012年   89篇
  2011年   101篇
  2010年   46篇
  2009年   48篇
  2008年   71篇
  2007年   53篇
  2006年   57篇
  2005年   64篇
  2004年   59篇
  2003年   49篇
  2002年   31篇
  2001年   16篇
  2000年   20篇
  1999年   14篇
  1998年   9篇
  1997年   9篇
  1996年   4篇
  1995年   6篇
  1994年   2篇
  1993年   7篇
  1992年   5篇
  1991年   13篇
  1990年   4篇
  1989年   10篇
  1988年   1篇
  1987年   6篇
  1986年   4篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   5篇
  1981年   2篇
  1980年   2篇
  1974年   2篇
  1972年   1篇
  1971年   1篇
排序方式: 共有1158条查询结果,搜索用时 62 毫秒
101.
Synthesis and SAR of novel oxazolidinones: discovery of ranbezolid   总被引:2,自引:0,他引:2  
Novel oxazolidinones were synthesized containing a number of substituted five-membered heterocycles attached to the 'piperazinyl-phenyl-oxazolidinone' core of eperezolid. Further, the piperazine ring of the core was replaced by other diamino-heterocycles. These modifications led to several compounds with potent activity against a spectrum of resistant and susceptible gram-positive organisms, along with the identification of ranbezolid (RBx 7644) as a clinical candidate.  相似文献   
102.
New Baylis–Hillman adducts are synthesized based on substituted 2-chloronicotinaldehydes and screened for their in vitro anti-malarial activity against chloroquine sensitive and chloroquine resistant Plasmodium falciparum. Out of the six new compounds synthesized and screened, 2b, 2c and 2d compounds showed substantial anti-malarial activity.  相似文献   
103.
High-resolution gene maps of individual equine chromosomes are essential to identify genes governing traits of economic importance in the horse. In pursuit of this goal we herein report the generation of a dense map of horse chromosome 22 (ECA22) comprising 83 markers, of which 52 represent specific genes and 31 are microsatellites. The map spans 831 cR over an estimated 64 Mb of physical length of the chromosome, thus providing markers at approximately 770 kb or 10 cR intervals. Overall, the resolution of the map is to date the densest in the horse and is the highest for any of the domesticated animal species for which annotated sequence data are not yet available. Comparative analysis showed that ECA22 shares remarkable conservation of gene order along the entire length of dog chromosome 24, something not yet found for an autosome in evolutionarily diverged species. Comparison with human, mouse, and rat homologues shows that ECA22 can be traced as two conserved linkage blocks, each related to individual arms of the human homologue-HSA20. Extending the comparison to the chicken genome showed that one of the ECA22 blocks that corresponds to HSA20q shares synteny conservation with chicken chromosome 20, suggesting the segment to be ancestral in mammals and birds.  相似文献   
104.
Caenorhabditis elegans expresses a glutathione transferase (GST) belonging to the Pi class, for which we propose the name CeGSTP2-2. CeGSTP2-2 (the product of the gst-10 gene) has the ability to conjugate the lipid peroxidation product 4-hydroxynonenal (4-HNE). Transgenic C. elegans strains were generated in which the 5'-flanking region and promoter of gst-10 were placed upstream of gst-10 and mGsta4 cDNAs, respectively. mGsta4 encodes the murine mGSTA4-4, an enzyme with particularly high catalytic efficiency for 4-HNE. The localization of both transgenes was similar to that of native CeGSTP2-2. The 4-HNE-conjugating activity in worm lysates increased in the order: control相似文献   
105.
Since the discovery of 3'-azido-3'-deoxythymidine (AZT) and 2',3'-didehydro-2',3'-dideoxythymidine (d4T) as potent and selective inhibitors of the replication of human immunodeficiency virus (HIV), there has been a growing interest for the synthesis of 2',3'-didehydro-2',3'dideoxynucleosides with electron withdrawing groups on the sugar moiety. Here we described an efficient method for the synthesis of such nucleoside analogs bearing structural features of both AZT and d4T The key intermediate, 3-azido-1,2-bis-O-acetyl-5-O-benzoyl-3-deoxy-D-ribofuranose, 5 was synthesized from commercially available D-xylose in five steps, from which a series of pyrimidine and purine nucleosides were synthesized in high yields. The resultant protected nucleosides were converted to target nucleosides using appropriate chemical modifications. The final nucleosides were evaluated as potential anti-HIV agents.  相似文献   
106.
Human immunodeficiency virus type 1 (HIV-1) evolved via cross-species transmission of simian immunodeficiency virus (SIVcpz) from chimpanzees (Pan troglodytes). Chimpanzees, like humans, are susceptible to infection by HIV-1. However, unlike humans, infected chimpanzees seldom develop immunodeficiency when infected with SIVcpz or HIV-1. SIVcpz and most strains of HIV-1 require the cell-surface receptor CC chemokine receptor 5 (CCR5) to infect specific leukocyte subsets, and, subsequent to infection, the level of CCR5 expression influences the amount of HIV-1 entry and the rate of HIV-1 replication. Evidence that variants in the 5' cis-regulatory region of CCR5 (5'CCR5) affect disease progression in humans suggests that variation in CCR5 might also influence the response of chimpanzees to HIV-1/SIVcpz. To determine whether patterns of genetic variation at 5'CCR5 in chimpanzees are similar to those in humans, we analyzed patterns of DNA sequence variation in 37 wild-born chimpanzees (26 P. t. verus, 9 P. t. troglodytes, and 2 P. t. schweinfurthii), along with previously published 5'CCR5 data from 112 humans and 50 noncoding regions in the human and chimpanzee genomes. These analyses revealed that patterns of variation in 5'CCR5 differ dramatically between chimpanzees and humans. In chimpanzees, 5'CCR5 was less diverse than 80% of noncoding regions and was characterized by an excess of rare variants. In humans, 5'CCR5 was more diverse than 90% of noncoding regions and had an excess of common variants. Under a wide range of demographic histories, these patterns suggest that, whereas human 5'CCR5 has been subject to balancing selection, chimpanzee 5'CCR5 has been influenced by a selective sweep. This result suggests that chimpanzee 5'CCR5 might harbor or be linked to functional variants that influence chimpanzee resistance to disease caused by SIVcpz/HIV-1.  相似文献   
107.
Hsp33, an Escherichia coli cytosolic chaperone, is inactive under normal conditions but becomes active upon oxidative stress. It was previously shown to dimerize upon activation in a concentration- and temperature-dependent manner. This dimer was thought to bind to aggregation-prone target proteins, preventing their aggregation. In the present study, we report small angle x-ray scattering (SAXS), steady state and time-resolved fluorescence, gel filtration, and glutaraldehyde cross-linking analysis of full-length Hsp33. Our circular dichroism and fluorescence results show that there are significant structural changes in oxidized Hsp33 at different temperatures. SAXS, gel filtration, and glutaraldehyde cross-linking results indicate, in addition to the dimers, the presence of oligomeric species. Oxidation in the presence of physiological salt concentration leads to significant increases in the oligomer population. Our results further show that under conditions that mimic the crowded milieu of the cytosol, oxidized Hsp33 exists predominantly as an oligomeric species. Interestingly, chaperone activity studies show that the oligomeric species is much more efficient compared with the dimers in preventing aggregation of target proteins. Taken together, these results indicate that in the cell, Hsp33 undergoes conformational and quaternary structural changes leading to the formation of oligomeric species in response to oxidative stress. Oligomeric Hsp33 thus might be physiologically relevant under oxidative stress.  相似文献   
108.
A high level of functional recombinant rat cytochrome P450C24 enzyme (CYP24A1) was obtained (40-50mg/L) using an Escherichia coli expression system. Purified enzyme was stable with retention of spectral and catalytic activity. The rate of 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] side-chain oxidation and cleavage to the end-product calcitroic acid was directly related to the rate of electron transfer from the ferredoxin redox partner. It was determined from substrate-induced spectral shifts that the 1 alpha- and 25-hydroxyl groups on vitamin D(3) metabolites and analogs were the major determinants for high-affinity binding to CYP24A1. Lowest K(d) values were obtained for 1 alpha-vitamin D(3) (0.06 microM) and 1,25-dihydroxyvitamin D(3) (0.05 microM) whereas unmodified parental vitamin D(3) and the non-secosteroid 25-hydroxycholesterol had lower affinities with K(d) values of 1.3 and 1.9 microM, respectively. The lowest binding affinity for natural vitamin D metabolites was observed for 24,25-dihydroxyvitamin D(3) [24,25(OH)(2)D(3)] (0.43 microM). Kinetic analyses of the two natural substrates 25-hydroxyvitamin D(3) [25(OH)D(3)] and 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] revealed similar K(m) values (0.35 and 0.38 microM, respectively), however, the turnover number was higher for 25(OH)D(3) compared to 1,25(OH)(2)D(3) (4.2 and 1 min(-1), respectively). Mutagenesis of F249 within the F-helix of CYP24A1 altered substrate binding and metabolism. Most notable, the hydrophobic to polar mutant F249T had a strong impact on lowering substrate-binding affinity and catalysis of the final C(23) oxidation sequence from 24,25,26,27-tetranor-1,23-dihydroxyvitamin D(3) to calcitroic acid. Two other hydrophobic 249 mutants (F249A and F249Y) also lowered substrate binding and expressed metabolic abnormalities that included the C(23)-oxidation defect observed with mutant F249T plus a similar defect involving an earlier pathway action for the C(24) oxidation of 1,24,25-trihydroxyvitamin D(3). Therefore, Phe-249 within the F-helix was demonstrated to have an important role in properly binding and aligning substrate in the CYP24A1 active site for C(23) and C(24) oxidation reactions.  相似文献   
109.
Juvenile neuronal ceroid lipofuscinosis is an inherited pediatric neurodegenerative disorder, which occurs as a result of mutations in the CLN3 gene that is located on chromosome 16p12.1. The encoded protein, CLN3P, is a putative transmembrane protein with no known function. In this study, we demonstrate that CLN3P resides on membrane lipid raft domains (detergent-resistant membranes) and provide important new data towards possible functions of the protein.  相似文献   
110.
Vertebrate gap junction channels are formed by a family of more than 20 connexin proteins. These gap junction proteins are expressed with overlapping cellular and tissue specificity, and coding region mutations can cause human hereditary diseases. Here we present a summary of what has been learned from voltage clamp studies performed on cell pairs either endogenously expressing gap junctions or in which connexins are exogenously expressed. General protocols presented here are currently used to transfect mammalian cells with connexins and to study the biophysical properties of the heterologously expressed connexin channels. Transient transfection is accomplished overnight with maximal expression occurring at about 36 h; stable transfectants normally can be generated within three or four weeks through colony selection. Electrophysiological protocols are presented for analysis of voltage dependence and single-channel conductance of gap junction channels as well as for studies of chemical gating of these channels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号