首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8296篇
  免费   899篇
  国内免费   40篇
  9235篇
  2022年   71篇
  2021年   140篇
  2020年   83篇
  2019年   96篇
  2018年   105篇
  2017年   105篇
  2016年   181篇
  2015年   365篇
  2014年   363篇
  2013年   442篇
  2012年   583篇
  2011年   591篇
  2010年   330篇
  2009年   276篇
  2008年   428篇
  2007年   381篇
  2006年   369篇
  2005年   356篇
  2004年   341篇
  2003年   283篇
  2002年   276篇
  2001年   223篇
  2000年   247篇
  1999年   217篇
  1998年   103篇
  1997年   81篇
  1996年   71篇
  1995年   70篇
  1994年   60篇
  1993年   77篇
  1992年   150篇
  1991年   126篇
  1990年   139篇
  1989年   127篇
  1988年   143篇
  1987年   108篇
  1986年   106篇
  1985年   115篇
  1984年   84篇
  1983年   46篇
  1982年   46篇
  1981年   49篇
  1980年   48篇
  1979年   78篇
  1978年   73篇
  1977年   61篇
  1976年   49篇
  1974年   48篇
  1973年   51篇
  1972年   39篇
排序方式: 共有9235条查询结果,搜索用时 15 毫秒
961.
Loss of function mutations in the hERG (human ether-a-go-go related gene or KCNH2) potassium channel underlie the proarrhythmic cardiac long QT syndrome type 2. Most often this is a consequence of defective trafficking of hERG mutants to the cell surface, with channel retention and degradation at the endoplasmic reticulum. Here, we identify the Hsp40 type 1 chaperones DJA1 (DNAJA1/Hdj2) and DJA2 (DNAJA2) as key modulators of hERG degradation. Overexpression of the DJAs reduces hERG trafficking efficiency, an effect eliminated by the proteasomal inhibitor lactacystin or with DJA mutants lacking their J domains essential for Hsc70/Hsp70 activation. Both DJA1 and DJA2 cause a decrease in the amount of hERG complexed with Hsc70, indicating a preferential degradation of the complex. Similar effects were observed with the E3 ubiquitin ligase CHIP. Both the DJAs and CHIP reduce hERG stability and act differentially on folding intermediates of hERG and the disease-related trafficking mutant G601S. We propose a novel role for the DJA proteins in regulating degradation and suggest that they act at a critical point in secretory pathway quality control.  相似文献   
962.
The endocytosis, recycling, and degradation of the insulin receptor were studied in IM-9 cells and U-937 cells by employing two monoclonal antibodies directed at the alpha subunit of the human insulin receptor, antibodies MA-5 and MA-10. Antibody MA-5 is an insulin agonist and MA-10 is an insulin antagonist (Forsayeth, J., Caro, J.F., Sinha, M.K., Maddux, B.A., and Goldfine, I.D. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 3448-3451). Both monoclonal antibodies, like insulin, induced the endocytosis of the insulin receptor within 15 min. Upon removal of extracellular ligand the internalized receptor recycled to the cell surface. At this time there was no degradation of the receptor as measured by a sensitive insulin receptor radioimmunoassay. After 20 h of incubation, insulin and MA-5, but not MA-10, induced significant receptor degradation as measured by both insulin receptor radioimmunoassay and metabolic labeling studies. These studies demonstrated, therefore, that: 1) internalization and recycling of the receptor can be induced by antireceptor monoclonal antibodies that are either insulin agonists or insulin antagonists; 2) enhanced receptor degradation can be induced by monoclonal antibodies that are insulin agonists; and 3) the process of receptor internalization does not necessarily lead to enhanced receptor degradation. Since prior studies have indicated that neither MA-5 nor MA-10 enhance insulin receptor kinase activity, the present studies also suggest that insulin receptor endocytosis and degradation induced by ligands different than insulin can occur without activation of this process.  相似文献   
963.
We hypothesized that activation of heat shock protein 70 (HSP70) by preconditioning, which is known to confer delayed cardioprotection, attenuates the impaired handling of Ca2+ at multiple sites. To test the hypothesis, we determined how the ryanodine receptor (RyR), sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA), and Na+/Ca2+ exchanger (NCX) handled Ca2+ in rat ventricular myocytes preconditioned with a -opioid receptor agonist, U50488H (UP), followed by blockade of HSP70 with a selective antisense oligonucleotide and subsequently subjected to simulated ischemia. We determined the following: 1) the Ca2+ transients induced by electrical stimulation and caffeine, which provide the overall picture of Ca2+ homeostasis; 2) expression of RyR, SERCA, and NCX; and 3) Ca2+ fluxes via NCX by the use of 45Ca2+ in the rat ventricular myocyte. We found that UP increased the activity of RyR, SERCA, and NCX and the expression of RyR and SERCA. These effects led to increases in the release of Ca2+ from the sarcoplasmic reticulum via RyR and in the removal of Ca2+ from the cytoplasm by reuptake of Ca2+ to the SR via SERCA and by extrusion of Ca2+ out of the cell via NCX. UP also reduced mitochondrial Ca2+ accumulation. All of the effects of UP were either abolished or significantly attenuated by blockade of HSP70 synthesis with a selective antisense oligonucleotide. The results are evidence that activation of HSP70 by preconditioning improves the ischemia-impaired Ca2+ homeostasis at multiple sites in the heart, which may be responsible, at least partly, for attenuated Ca2+ overload, improved recovery in contractile function, and cardioprotection. intracellular Ca2+, -opioid receptor; Na+/Ca2+ exchanger; ryanodine receptor; sarco(endo)plasmic reticulum Ca2+-ATPase  相似文献   
964.
Mitotic centrosomes are formed when centrioles start to recruit large amounts of pericentriolar material (PCM) around themselves in preparation for mitosis. This centrosome “maturation” requires the centrioles and also Polo/PLK1 protein kinase. The PCM comprises several hundred proteins and, in Drosophila, Polo cooperates with the conserved centrosome proteins Spd‐2/CEP192 and Cnn/CDK5RAP2 to assemble a PCM scaffold around the mother centriole that then recruits other PCM client proteins. We show here that in Drosophila syncytial blastoderm embryos, centrosomal Polo levels rise and fall during the assembly process—peaking, and then starting to decline, even as levels of the PCM scaffold continue to rise and plateau. Experiments and mathematical modelling indicate that a centriolar pulse of Polo activity, potentially generated by the interaction between Polo and its centriole receptor Ana1 (CEP295 in humans), could explain these unexpected scaffold assembly dynamics. We propose that centrioles generate a local pulse of Polo activity prior to mitotic entry to initiate centrosome maturation, explaining why centrioles and Polo/PLK1 are normally essential for this process.  相似文献   
965.
A host-mediated RNA-editing event allows hepatitis delta virus (HDV) to express two essential proteins, the small delta antigen (HDAg-S) and the large delta antigen (HDAg-L), from a single open reading frame. One or several members of the ADAR (adenosine deaminases that act on RNA) family are thought to convert the adenosine to an inosine (I) within the HDAg-S amber codon in antigenomic RNA. As a consequence of replication, the UIG codon is converted to a UGG (tryptophan [W]) codon in the resulting HDAg-L message. Here, we used a novel reporter system to monitor the editing of the HDV amber/W site in the absence of replication. In cultured cells, we observed that both human ADAR1 (hADAR1) and hADAR2 were capable of editing the amber/W site with comparable efficiencies. We also defined the minimal HDV substrate required for hADAR1- and hADAR2-mediated editing. Only 24 nucleotides from the amber/W site were sufficient to enable efficient editing by hADAR1. Hence, the HDV amber/W site represents the smallest ADAR substrate yet identified. In contrast, the minimal substrate competent for hADAR2-mediated editing contained 66 nucleotides.  相似文献   
966.
Large-scale proteomic analyses in Escherichia coli have documented the composition and physical relationships of multiprotein complexes, but not their functional organization into biological pathways and processes. Conversely, genetic interaction (GI) screens can provide insights into the biological role(s) of individual gene and higher order associations. Combining the information from both approaches should elucidate how complexes and pathways intersect functionally at a systems level. However, such integrative analysis has been hindered due to the lack of relevant GI data. Here we present a systematic, unbiased, and quantitative synthetic genetic array screen in E. coli describing the genetic dependencies and functional cross-talk among over 600,000 digenic mutant combinations. Combining this epistasis information with putative functional modules derived from previous proteomic data and genomic context-based methods revealed unexpected associations, including new components required for the biogenesis of iron-sulphur and ribosome integrity, and the interplay between molecular chaperones and proteases. We find that functionally-linked genes co-conserved among γ-proteobacteria are far more likely to have correlated GI profiles than genes with divergent patterns of evolution. Overall, examining bacterial GIs in the context of protein complexes provides avenues for a deeper mechanistic understanding of core microbial systems.  相似文献   
967.
Food selection by the marine cladoceran Penilia avirostris was studied in the field by HPLC analysis of phytoplankton marker pigments and in the laboratory by microscopic measurement of cell removal. Comparison between pigment composition in natural phytoplankton and in P. avirostris showed that P. avirostris preferred diatoms, cryptophytes and chlorophytes, and ignored prymnesiophytes and dinoflagellates. Peridinin, the marker pigment for dinoflagellates was found in P. avirostris only when the dinoflagellate populations were dominated by Prorocentrum. Pigment degradation rates ranged from 13.73% for alloxanthin to 36.62% for chlorophyll a. Clearance rates measured in the laboratory provided further evidence of strong preference for diatoms and cryptophytes, and avoidance of dinoflagellates. Microscopic counts suggested that P. avirostris was feeding on prymnesiophytes, although ingestion of prymnesiophytes could not be confirmed by pigment analysis.  相似文献   
968.
969.
Improving stress tolerance and yield in crops are major goals for agriculture. Here, we show a new strategy to increase drought tolerance and yield in legumes by overexpressing trehalose-6-phosphate synthase in the symbiotic bacterium Rhizobium etli. Phaseolus vulgaris (common beans) plants inoculated with R. etli overexpressing trehalose-6-phosphate synthase gene had more nodules with increased nitrogenase activity and higher biomass compared with plants inoculated with wild-type R. etli. In contrast, plants inoculated with an R. etli mutant in trehalose-6-phosphate synthase gene had fewer nodules and less nitrogenase activity and biomass. Three-week-old plants subjected to drought stress fully recovered whereas plants inoculated with a wild-type or mutant strain wilted and died. The yield of bean plants inoculated with R. etli overexpressing trehalose-6-phosphate synthase gene and grown with constant irrigation increased more than 50%. Macroarray analysis of 7,200 expressed sequence tags from nodules of plants inoculated with the strain overexpressing trehalose-6-phosphate synthase gene revealed upregulation of genes involved in stress tolerance and carbon and nitrogen metabolism, suggesting a signaling mechanism for trehalose. Thus, trehalose metabolism in rhizobia is key for signaling plant growth, yield, and adaptation to abiotic stress, and its manipulation has a major agronomical impact on leguminous plants.  相似文献   
970.
Social experiences can be useful sources of information for animals charged with making fitness‐related decisions. Fighting experience can alter an animal's perception of its fighting ability possibly leading to changes in future contest decisions, which may increase/decrease their probability of winning future contests. Winner and loser effects have been revealed in a wide array of animals, but studies using reptilian models are rare. This study investigated the impact of fighting experience on future contest performance and outcome in the green anole lizard and investigated the assessment strategies used by anoles during contests of different intensities. To determine whether the green anole expresses winner or loser effects, focal animals engaged in a primary contest with a smaller (larger) opponent to gain a winning (losing) experience; opponent size asymmetries were a significant predictor of contest outcome. Focal individuals were isolated for 2 d before being given a secondary contest with a size‐matched, naïve opponent. We found no evidence of winner or loser effects 2 d following a previous contest. Although previous contest outcome did not dictate future contest success, dynamics of the previous contest did. Highly aggressive primary contest losers won a significant proportion of the secondary contests, while less aggressive losers were more apt to lose the secondary contest. Secondary contest success of prior winners was not influenced by earlier contest performance. Further analyses of contest dynamics reveal that individuals may use different assessment strategies depending on the intensity of the contest. Our results demonstrate that future contest success may be driven more by individual performance in a prior contest and less by prior contest outcome.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号