首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1596篇
  免费   190篇
  国内免费   1篇
  2022年   9篇
  2021年   18篇
  2020年   13篇
  2019年   13篇
  2018年   19篇
  2017年   24篇
  2016年   31篇
  2015年   71篇
  2014年   42篇
  2013年   79篇
  2012年   86篇
  2011年   98篇
  2010年   59篇
  2009年   48篇
  2008年   77篇
  2007年   68篇
  2006年   73篇
  2005年   65篇
  2004年   60篇
  2003年   62篇
  2002年   80篇
  2001年   55篇
  2000年   62篇
  1999年   62篇
  1998年   37篇
  1997年   34篇
  1996年   22篇
  1995年   28篇
  1994年   27篇
  1993年   30篇
  1992年   33篇
  1991年   39篇
  1990年   29篇
  1989年   18篇
  1988年   22篇
  1987年   11篇
  1986年   14篇
  1985年   26篇
  1984年   10篇
  1983年   9篇
  1982年   7篇
  1981年   9篇
  1979年   12篇
  1978年   13篇
  1977年   8篇
  1976年   8篇
  1975年   11篇
  1974年   7篇
  1973年   9篇
  1968年   6篇
排序方式: 共有1787条查询结果,搜索用时 15 毫秒
991.
The apoptosis-inducing Fas ligand (FasL) is a type II transmembrane protein that is involved in the downregulation of immune reactions by activation-induced cell death (AICD) as well as in T cell-mediated cytotoxicity. Proteolytic cleavage leads to the generation of membrane-bound N-terminal fragments and a soluble FasL (sFasL) ectodomain. sFasL can be detected in the serum of patients with dysregulated inflammatory diseases and is discussed to affect Fas-FasL-mediated apoptosis. Using pharmacological approaches in 293T cells, in vitro cleavage assays as well as loss and gain of function studies in murine embryonic fibroblasts (MEFs), we demonstrate that the disintegrin and metalloprotease ADAM10 is critically involved in the shedding of FasL. In primary human T cells, FasL shedding is significantly reduced after inhibition of ADAM10. The resulting elevated FasL surface expression is associated with increased killing capacity and an increase of T cells undergoing AICD. Overall, our findings suggest that ADAM10 represents an important molecular modulator of FasL-mediated cell death.  相似文献   
992.
Synthetic extracellular matrix hydrogels can be used for three-dimensional cell culture, wound repair, and tissue engineering. Using the bifunctional electrophile poly(ethylene glycol) diacrylate (PEGDA), thiol-modified glycosaminoglycans and polypeptides can be cross-linked into biocompatible materials in the presence of cells or tissues. However, the rate of in situ cross-linking with PEGDA under physiological conditions may occur too slowly for clinical applications requiring a fast-curing preparation. To explore a wider range of cross-linking time courses, five homo-bifunctional PEG derivatives were synthesized and examined as cross-linking agents for thiol-modified derivatives of hyaluronan (HA). Thiol reaction rate constants were measured over a pH range of 7.4 to 8.6. The order of reactivity for the functional groups used was determined to be maleimide > iodoacetate > bromoacetate > iodoacetamide > acrylate > bromoacetamide, with rates increasing exponentially with increasing pH. The range of gelation times at physiological pH varied from less than 1 min to over 2 h. Addition of the cross-linkers to cell culture medium showed minimal cytotoxicity toward primary human dermal fibroblasts at concentrations anticipated during in situ cross-linking. Moreover, hydrogels prepared from thiol-modified gelatin and thiol-modified HA were biocompatible and supported attachment and proliferation of fibroblasts and hepatocytes.  相似文献   
993.
Can plants use entomopathogens as bodyguards?   总被引:3,自引:0,他引:3  
For 20 years, ecologists have been gathering evidence in support of the hypothesis that plants can use insect natural enemies such as predators and parasitoids as bodyguards to protect themselves from herbivory, but entomopathogens have escaped this consideration. We extend the bodyguard hypothesis to ask whether plants can use entomopathogens as bodyguards. We first discuss the evolutionary context of such tritrophic interactions and then categorize possible mechanisms as: (1) maintaining a population of bodyguards on the plant surface, (2) increasing contact rates between insect host and pathogen and (3) increasing the susceptibility of the host. We explore these mechanisms further, examining published studies for evidence for the hypothesis. We then discuss potential costs to the plant of promoting pathogens as bodyguards which may include a reduction in the efficiency of other "bodyguard" species, the incidental promotion of plant pathogens and the risk of entomopathogens developing phytopathogenicity. Aside from our intention to stimulate the testing of the bodyguard hypothesis with entompathogens and to provide a conceptual framework for this, we hope to bring evolutionary ecology and insect pathology closer together.  相似文献   
994.
The Manduca sexta Malpighian tubule assay system, developed to monitor adenylate cyclase activity, was used in combination with HPLC to isolate a novel cAMP generating peptide from 350,000 whole flesh flies, Neobellieria bullata. Mass spectrometry revealed a molecular mass of 5,047 daltons, and Edman degradation the following sequence: AGAEAEKLSGLSKYFNGTTMAGRANVAKATYAVIGLIIAYNVMKPKKK. This 48-mer peptide, called Neb-cGP, does not belong to the corticotropin releasing factor family of insect diuretic peptides. Electrophoresis and subsequent immunoblotting of peptides immunoprecipitated from a homogenate of entire flies showed that one fly contained approximately 0.003 to 0.03 μg Neb-cGP and that 10 μg represents the lowest immunostainable amount on a Western blot. © 1996 Wiley-Liss, Inc.  相似文献   
995.
The architecture of flowering plants exhibits both phenotypic diversity and plasticity, determined, in part, by the number and activity of axillary meristems and, in part, by the growth characteristics of the branches that develop from the axillary buds. The plasticity of shoot branching results from a combination of various intrinsic and genetic elements, such as number and position of nodes and type of growth phase, as well as environmental signals such as nutrient availability, light characteristics, and temperature (Napoli et al., 1998; Bennett and Leyser, 2006; Janssen et al., 2014; Teichmann and Muhr, 2015; Ueda and Yanagisawa, 2019). Axillary meristem initiation and axillary bud outgrowth are controlled by a complex and interconnected regulatory network. Although many of the genes and hormones that modulate branching patterns have been discovered and characterized through genetic and biochemical studies, there are still many gaps in our understanding of the control mechanisms at play. In this review, we will summarize our current knowledge of the control of axillary meristem initiation and outgrowth into a branch.

The key regulatory genes and the role of multiple plant hormones coordinate the process of axillary meristem initiation and subsequent growth into a branch.  相似文献   
996.
An experimental investigation of the wall shear stress distribution downstream of a backward-facing step is carried out. The wall shear stress distribution was determined by measuring the deformation of a gel layer, attached to the wall downstream of the step. Speckle pattern interferometry was applied to measure the deformation of the gel layer. The measured deformation, combined with the properties of the gel layer, served as an input for a finite element solid mechanics computation to determine the stress distribution in the gel layer. The wall shear stress, required to generate the measured deformation of the gel layer, was determined from these computations. A Newtonian buffer solution and a non-Newtonian red blood cell suspension were used as measuring fluids. The deformation of the gel layer was determined for a Newtonian buffer solution to evaluate the method and to obtain the properties of the gel layer. Subsequently, the wall shear stress distribution for the non-Newtonian red blood cell suspension was determined for three different flow rates. The inelastic non-Newtonian Carreau-Yasuda model served as constitutive model for the red blood cell suspension. Using this model, the velocity and wall shear stress distribution were computed by means of a finite element fluid mechanics computation. From the comparison between the numerical and the experimental results, it can be concluded that wall shear stresses, induced by the red blood cell suspension, can be modeled accurately by employing a Carreau-Yasuda model.  相似文献   
997.
While aggregation‐prone proteins are known to accelerate aging and cause age‐related diseases, the cellular mechanisms that drive their cytotoxicity remain unresolved. The orthologous proteins MOAG‐4, SERF1A, and SERF2 have recently been identified as cellular modifiers of such proteotoxicity. Using a peptide array screening approach on human amyloidogenic proteins, we found that SERF2 interacted with protein segments enriched in negatively charged and hydrophobic, aromatic amino acids. The absence of such segments, or the neutralization of the positive charge in SERF2, prevented these interactions and abolished the amyloid‐promoting activity of SERF2. In protein aggregation models in the nematode worm Caenorhabditis elegans, protein aggregation and toxicity were suppressed by mutating the endogenous locus of MOAG‐4 to neutralize charge. Our data indicate that MOAG‐4 and SERF2 drive protein aggregation and toxicity by interactions with negatively charged segments in aggregation‐prone proteins. Such charge interactions might accelerate primary nucleation of amyloid by initiating structural changes and by decreasing colloidal stability. Our study points at charge interactions between cellular modifiers and amyloidogenic proteins as potential targets for interventions to reduce age‐related protein toxicity.  相似文献   
998.
The equilibria and kinetics of the interactions of proflavine (PR) and its platinum-containing derivative [PtCl(tmen)(2)HNC(13)H(7)(NHCH(2)CH(2))(2)](+) (PRPt) with double-stranded poly(A) have been investigated by spectrophotometry and Joule temperature-jump relaxation at ionic strength 0.1 M, 25 degrees C, and pH 5.2. Spectrophotometric measurements indicate that base-dye interactions are prevailing. T-jump experiments with polarized light showed that effects due to field-induced alignment could be neglected. Both of the investigated systems display two relaxation effects. The kinetic features of the reaction are discussed in terms of a two-step series mechanism in which a precursor complex DS(I) is formed in the fast step, which is then converted to a final complex in the slow step. The rate constants of the fast step are k(1) = (2.5 +/- 0.4) x 10(6) M(-1) s(-1), k(-1) = (2.4 +/- 0.1) x 10(3) s(-1) for poly(A)-PR and k(1) = (2.3 +/- 0.1) x 10(6) M(-1) s(-1), k(-1) = (1.6 +/- 0.2) x 10(3) s(-1) for poly(A)-PRPt. The rate constants for the slow step are k(2) = (4.5 +/- 0.5) x 10(2) s(-1), k(-2) = (1.7 +/- 0.1) x 10(2) s(-1) for poly(A)-PR and k(2) = 9.7 +/- 1.2 s(-1), k(-2) = 10.6 +/- 0.2 s(-1) for poly(A)-PRPt. Spectrophotometric measurements yield for the equilibrium constants and site size the values K = (4.5 +/- 0.1) x 10(3) M(-1), n = 1.3 +/- 0.5 for poly(A)-PR and K = (2.9 +/- 0.1) x 10(3) M(-1), n = 2.3 +/- 0.6 for poly(A)-PRPt. The values of k(1) are similar and lower than expected for diffusion-limited reactions. The values of k(-1) are similar as well. It is suggested that the formation of DS(I) involves only the proflavine residues in both systems. In contrast, the values of k(2) and k(-2) in poly(A)-PRPt are much lower than in poly(A)-PR. The results suggest that in the complex DS(II) of poly(A)-PRPt both proflavine and platinum residues are intercalated. In addition, a very slow process was detected and ascribed to the covalent binding of Pt(II) to the adenine.  相似文献   
999.
The homoacetogenic bacteria Acetobacterium woodii, A. carbinolicum, Sporomusa ovata, and Eubacterium limosum, the methanogenic archaeon Methanobacterium formicicum, and the sulfate-reducing bacterium Desulfotomaculum orientis all produced formate as an intermediate when they were growing chemolithoautotrophically with H2 and CO2 as sources of energy, electrons, and carbon. The sulfate-reducing bacterium Desulfovibrio vulgaris grew chemolithoheterotrophically with H2 and CO2 using acetate as carbon source, but also produced formate when growth was limited by sulfate. All these bacteria were also able to grow on formate as energy source. Formate accumulated transiently while H2 was consumed. The maximum formate concentrations measured in cultures of A. woodii and A. carbinolicum were proportional to the initial H2 partial pressure, giving a ratio of about 0.5 mM formate per 10 kPa H2. The methanogen Methanobacterium bryantii, on the other hand, was unable to grow on formate and did not produce formate during chemolithoautotrophic growth on H2. The results indicate that the ability to utilize formate, that is, to possess a formate dehydrogenase, was the precondition for the production of formate during chemolithotrophic growth on H2. Received: 24 November 1998 / Accepted: 30 December 1998  相似文献   
1000.
Arthropods use odours associated with the presence of their food, enemies and competitors when searching for patches. Responses to these odours therefore determine the spatial distribution of animals, and are decisive for the occurrence and strength of interactions among species. Therefore, a logical first step in studying food web interactions is the analysis of behaviour of individuals that are searching for patches of food. We followed this approach when studying interactions in an artificial food web occurring on greenhouse cucumber in the Netherlands. In an earlier paper we found that one of the predators of the food web, the predatory mite Phytoseiulus persimilis Athias-Henriot, used to control spider mites, discriminates between odours from plants with spider mites, Tetranychus urticae Koch, and plants with spider mites plus conspecific predators. The odours used for discrimination are produced by adult prey in response to the presence of predators, and probably serve as an alarm pheromone to warn related spider mites. Other predator species may also trigger production of this alarm pheromone, which P. persimilis could use in turn to avoid plants with heterospecific predators. We therefore studied the response of the latter to odours from plants with spider mites and 3 other predator species, i.e. the generalist predatory bug Orius laevigatus (Fieber), the polyphagous thrips Frankliniella occidentalis and the spider-mite predator Neoseiulus californicus (McGregor). Both olfactometer and greenhouse release experiments yielded no evidence that P. persimilis avoids plants with any of the 3 heterospecific predators. This suggests that these predators do not elicit production of alarm pheromones in spider mites, and we argue that this is caused by a lack of coevolutionary history. The consequences of the lack of avoidance of heterospecific predators for interactions in food webs and biological control are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号