首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   154篇
  免费   16篇
  国内免费   1篇
  2022年   2篇
  2021年   2篇
  2018年   2篇
  2016年   4篇
  2015年   5篇
  2014年   9篇
  2013年   12篇
  2012年   4篇
  2011年   10篇
  2010年   4篇
  2009年   8篇
  2008年   7篇
  2007年   9篇
  2006年   8篇
  2005年   8篇
  2004年   6篇
  2003年   3篇
  2002年   7篇
  2001年   4篇
  2000年   2篇
  1999年   5篇
  1998年   3篇
  1997年   2篇
  1996年   5篇
  1994年   2篇
  1993年   3篇
  1992年   3篇
  1991年   4篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1981年   3篇
  1979年   1篇
  1978年   3篇
  1977年   1篇
  1976年   1篇
  1975年   4篇
  1974年   1篇
  1971年   1篇
排序方式: 共有171条查询结果,搜索用时 24 毫秒
11.
The ability of two strains of Lactobacillus acidophilus, CRL 640 and CRL 800, to survive and retain their biological activities under frozen storage was determined. Freezing and thawing, as well as frozen storage, damaged the cell membrane, rendering the microorganisms sensitive to sodium chloride and bile salts. Both lactic acid production and proteolytic activity were depressed after 21 days at -20 degreesC, whereas beta-galactosidase activity per cell unit was increased. Cell injury was partially overcome after repair in a salt-rich medium. Copyright 1998 Academic Press.  相似文献   
12.
13.
Ruckle ME  DeMarco SM  Larkin RM 《The Plant cell》2007,19(12):3944-3960
Plastid signals are among the most potent regulators of genes that encode proteins active in photosynthesis. Plastid signals help coordinate the expression of the nuclear and chloroplast genomes and the expression of genes with the functional state of the chloroplast. Here, we report the isolation of new cryptochrome1 (cry1) alleles from a screen for Arabidopsis thaliana genomes uncoupled mutants, which have defects in plastid-to-nucleus signaling. We also report genetic experiments showing that a previously unidentified plastid signal converts multiple light signaling pathways that perceive distinct qualities of light from positive to negative regulators of some but not all photosynthesis-associated nuclear genes (PhANGs) and change the fluence rate response of PhANGs. At least part of this remodeling of light signaling networks involves converting HY5, a positive regulator of PhANGs, into a negative regulator of PhANGs. We also observed that mutants with defects in both plastid-to-nucleus and cry1 signaling exhibited severe chlorophyll deficiencies. These data show that the remodeling of light signaling networks by plastid signals is a mechanism that plants use to integrate signals describing the functional and developmental state of plastids with signals describing particular light environments when regulating PhANG expression and performing chloroplast biogenesis.  相似文献   
14.
Local environmental effects on the structure of the prion protein   总被引:1,自引:0,他引:1  
Prion diseases are neurodegenerative diseases causally linked to the partial unfolding and subsequent misfolding and aggregation of the prion protein (PrP). While most proteins fold into a single low energy state, PrP can fold into two distinct isoforms. In its innocuous state, denoted as PrPC, the protein has predominantly alpha-helical secondary structure, however, PrPC can misfold into an isoform rich in extended structure capable of forming toxic and infectious aggregates. While prion disease is believed to be a protein-only disease, one not requiring any non-protein elements for propagation, the different environments the protein finds itself in vivo likely influence its ability to misfold and aggregate. In this review we will examine various molecules, covalent modifications and environments PrP faces in vivo and the effect they have on PrP's local environment and, potentially, conformation. Included in this discussion are: (1) pH, (2) carbohydrates, (3) lipid membranes, (4) metal ions, and (5) small molecules.  相似文献   
15.
16.
Bennion BJ  DeMarco ML  Daggett V 《Biochemistry》2004,43(41):12955-12963
Transmissible spongiform encephalopathies are a class of fatal neurodegenerative diseases linked to the prion protein. The prion protein normally exists in a soluble, globular state (PrP(C)) that appears to participate in copper metabolism in the central nervous system and/or signal transduction. Infection or disease occurs when an alternatively folded form of the prion protein (PrP(Sc)) converts soluble and predominantly alpha-helical PrP(C) into aggregates rich in beta-structure. The structurally disordered N-terminus adopts beta-structure upon conversion to PrP(Sc) at low pH. Chemical chaperones, such as trimethylamine N-oxide (TMAO), can prevent formation of PrP(Sc) in scrapie-infected mouse neuroblastoma cells [Tatzelt, J., et al. (1996) EMBO J. 15, 6363-6373]. To explore the mechanism of TMAO protection of PrP(C) at the atomic level, molecular dynamics simulations were performed under conditions normally leading to conversion (low pH) with and without 1 M TMAO. In PrP(C) simulations at low pH, the helix content drops and the N-terminus is brought into the small native beta-sheet, yielding a PrP(Sc)-like state. Addition of 1 M TMAO leads to a decreased radius of gyration, a greater number of protein-protein hydrogen bonds, and a greater number of tertiary contacts due to the N-terminus forming an Omega-loop and packing against the structured core of the protein, not due to an increase in the level of extended structure as with the PrP(C) to PrP(Sc) simulation. In simulations beginning with the "PrP(Sc)-like" structure (derived from PrP(C) simulated at low pH in pure water) in 1 M TMAO, similar structural reorganization at the N-terminus occurred, disrupting the extended sheet. The mechanism of protection by TMAO appears to be exclusionary in nature, consistent with previous theoretical and experimental studies. The TMAO-induced N-terminal conformational change prevents residues that are important in the conversion of PrP(C) to PrP(Sc) from assuming extended sheet structure at low pH.  相似文献   
17.
DeMarco ML  Silveira J  Caughey B  Daggett V 《Biochemistry》2006,45(51):15573-15582
Decades after the prion protein was implicated in transmissible spongiform encephalopathies, the structure of its toxic isoform and its mechanism of toxicity remain unknown. By gathering available experimental data, albeit low resolution, a few pieces of the prion puzzle can be put in place. Currently, there are two fundamentally different models of a prion protofibril. One has its building blocks derived from a molecular dynamics simulation of the prion protein under amyloidogenic conditions, termed the spiral model. The other model was constructed by threading a portion of the prion sequence through a beta-helical structure from the Protein Data Bank. Here we compare and contrast these models with respect to all of the available experimental information, including electron micrographs, symmetries, secondary structure, oligomerization interfaces, enzymatic digestion, epitope exposure, and disaggregation profiles. Much of this information was not available when the two models were introduced. Overall, we find that the spiral model is consistent with all of the experimental results. In contrast, it is difficult to reconcile several of the experimental observables with the beta-helix model. While the experimental constraints are of low resolution, in bringing together the previously disconnected experiments, we have developed a clearer picture of prion aggregates. Both the improved characterization of prion aggregates and the existing atomic models can be used to devise further experiments to better elucidate the misfolding pathway and the structure of prion protofibrils.  相似文献   
18.

Background

Systemic inflammation may contribute to cachexia in patients with chronic obstructive pulmonary disease (COPD). In this longitudinal study we assessed the association between circulating C-reactive protein (CRP), tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and IL-6 levels and subsequent loss of fat free mass and fat mass in more than 400 COPD patients over three years.

Methods

The patients, aged 40–76, GOLD stage II-IV, were enrolled in 2006/07, and followed annually. Fat free mass and fat mass indexes (FFMI & FMI) were calculated using bioelectrical impedance, and CRP, TNF-α, IL-1ß, and IL-6 were measured using enzyme immunoassays. Associations with mean change in FFMI and FMI of the four inflammatory plasma markers, sex, age, smoking, FEV1, inhaled steroids, arterial hypoxemia, and Charlson comorbidity score were analyzed with linear mixed models.

Results

At baseline, only CRP was significantly (but weakly) associated with FFMI (r = 0.18, p < 0.01) and FMI (r = 0.27, p < 0.01). Univariately, higher age, lower FEV1, and use of beta2-agonists were the only significant predictors of decline in FFMI, whereas smoking, hypoxemia, Charlson score, and use of inhaled steroids predicted increased loss in FMI. Multivariately, high levels of TNF-α (but not CRP, IL-1ß or IL-6) significantly predicted loss of FFMI, however only in patients with established cachexia at entry.

Conclusion

This study does not support the hypothesis that systemic inflammation is the cause of accelerated loss of fat free mass in COPD patients, but suggests a role for TNF-α in already cachectic COPD patients.  相似文献   
19.
20.
Many Low Arctic tundra regions are currently undergoing a vegetation shift towards increasing growth and groundcover of tall deciduous shrubs due to recent climate warming. Vegetation change directly affects ecosystem carbon balance, but it can also affect soil biogeochemical cycling through physical and biological feedback mechanisms. Recent studies indicate that enhanced snow accumulation around relatively tall shrubs has negligible physical effect on litter decomposition rates. However, these investigations were no more than 3 years, and therefore may be insufficient to detect differences in inherently slow biogeochemical processes. Here, we report a 5-year study near Daring Lake, Canada, comparing Betula neoalaskana foliar litter decay rates within unmanipulated and snowfenced low-stature birch (height: ~?0.3 m) plots to test the physical effect of experimentally deepened snow, and within tall birch (height: ~?0.8 m) plots to test the combined physical and biological effects, that is, deepened snow plus strong birch dominance. Having corrected for carbon gain by the colonizing decomposers, actual litter carbon loss increased by approximately 25% in the tall birch relative to both low birch sites. Decay of lignin-like acid unhydrolizable litter residues also accelerated in the tall birch site, and a similar but lower magnitude response in the snowfenced low birch site indicated that physical effects of deepened snow were at least partially responsible. In contrast, deepened snow alone did not affect litter carbon loss. Our findings suggest that a combination of greater litter inputs, altered soil microbial community, enhanced soil nutrient pools, and warmer winter soils together promote relatively fast decomposition of recalcitrant litter carbon in tall birch shrub environments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号