首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3235篇
  免费   488篇
  国内免费   1篇
  2021年   44篇
  2018年   44篇
  2017年   35篇
  2016年   35篇
  2015年   66篇
  2014年   71篇
  2013年   122篇
  2012年   144篇
  2011年   153篇
  2010年   99篇
  2009年   91篇
  2008年   140篇
  2007年   155篇
  2006年   245篇
  2005年   133篇
  2004年   118篇
  2003年   117篇
  2002年   108篇
  2001年   125篇
  2000年   99篇
  1999年   64篇
  1998年   42篇
  1997年   28篇
  1996年   42篇
  1995年   37篇
  1994年   29篇
  1993年   28篇
  1992年   69篇
  1991年   68篇
  1990年   73篇
  1989年   90篇
  1988年   68篇
  1987年   67篇
  1986年   44篇
  1985年   56篇
  1984年   49篇
  1983年   41篇
  1982年   30篇
  1981年   31篇
  1979年   49篇
  1978年   45篇
  1977年   34篇
  1976年   34篇
  1975年   42篇
  1974年   40篇
  1973年   41篇
  1972年   37篇
  1971年   36篇
  1970年   38篇
  1969年   34篇
排序方式: 共有3724条查询结果,搜索用时 140 毫秒
991.
In the 1980s, alligators (Alligator mississippiensis) of Lake Apopka (Florida, USA) underwent a population decline associated with decreased egg viability, effects that have been associated with endocrine-disrupting, persistent organochlorine pesticides. It is currently unknown whether the decreased egg viability is due to fertilization failure or early embryonic death. Therefore, we conducted a preliminary study to evaluate the use of microsatellite DNA loci to determine the fertilization status of nonviable eggs. Using microsatellite analysis, we compared genotypes from blasto-disks and embryos with the genotypes from females trapped at the nest. Four of five nonviable egg samples tested yielded evidence of fertilization. No evidence of unfertilized eggs was obtained, but amplifiable DNA could not be obtained from one entirely nonviable clutch. Thus, we demonstrate that early embryonic mortality in alligators can be detected by microsatellite analysis, but also suggest substantial effort is needed to improve the recovery of DNA and amplification of alligator microsatellite loci.  相似文献   
992.
Fanconi anemia (FA) is a genetically and phenotypically heterogenous autosomal recessive disease associated with chromosomal instability and hypersensitivity to DNA crosslinkers. Prognosis is poor due to progressive bone marrow failure and increased risk of neoplasia, but revertant mosaicism may improve survival. Mechanisms of reversion include back mutation, intragenic crossover, gene conversion and compensating deletions/insertions. We describe the types of reversions found in five mosaic FA patients who are compound heterozygotes for single base mutations in FANCA or FANCC. Intragenic crossover could be shown as the mechanism of self-correction in the FANCC patient. Restoration to wildtype via back mutation or gene conversion of either the paternal or maternal allele was observed in the FANCA patients. The sequence environments of these mutations/reversions were indicative of high mutability, and selective advantage of bone marrow precursor cells carrying a completely restored FANCA allele might explain the surprisingly uniform pattern of these reversions. We also describe a first example of in vitro phenotypic reversion via the emergence of a compensating missense mutation 15 amino acids downstream of the constitutional mutation, which explains the reversion to MMC resistance of the respective lymphoblastoid cell line. With one exception, our mosaic patients showed improvement of their hematological status during a three- to six-year observation period, indicating a proliferative advantage of the reverted cell lineages. In patients with Fanconi anemia, genetic instability due to defective caretaker genes sharply increases the risk of neoplasia, but at the same time increases the chance for revertant mosaicism leading to improved bone marrow function.  相似文献   
993.
In herpes simplex virus-infected cells, viral γ134.5 protein blocks the shutoff of protein synthesis by activated protein kinase R (PKR) by directing the protein phosphatase 1α to dephosphorylate the α subunit of eukaryotic translation initiation factor 2 (eIF-2α). The amino acid sequence of the γ134.5 protein which interacts with the phosphatase has high homology to a domain of the eukaryotic protein GADD34. A class of compensatory mutants characterized by a deletion which results in the juxtaposition of the α47 promoter next to US11, a γ2 (late) gene in wild-type virus-infected cells, has been described. In cells infected with these mutants, protein synthesis continues even in the absence of the γ134.5 gene. In these cells, PKR is activated but eIF-2α is not phosphorylated, and the phosphatase is not redirected to dephosphorylate eIF-2α. We report the following: (i) in cells infected with these mutants, US11 protein was made early in infection; (ii) US11 protein bound PKR and was phosphorylated; (iii) in in vitro assays, US11 blocked the phosphorylation of eIF-2α by PKR activated by poly(I-C); and (iv) US11 was more effective if present in the reaction mixture during the activation of PKR than if added after PKR had been activated by poly(I-C). We conclude the following: (i) in cells infected with the compensatory mutants, US11 made early in infection binds to PKR and precludes the phosphorylation of eIF-2α, whereas US11 driven by its natural promoter and expressed late in infection is ineffective; and (ii) activation of PKR by double-stranded RNA is a common impediment countered by most viruses by different mechanisms. The γ134.5 gene is not highly conserved among herpesviruses. A likely scenario is that acquisition by a progenitor of herpes simplex virus of a portion of the cellular GADD34 gene resulted in a more potent and reliable means of curbing the effects of activated PKR. US11 was retained as a γ2 gene because, like many viral proteins, it has multiple functions.The herpes simplex virus 1 (HSV-1) genome encodes two sets of functions. The first and paramount are functions related to viral gene expression, replication of viral DNA, synthesis of virion proteins, assembly, packaging, and egress of the virus from the infected cell. The second set of functions, no less important in the survival of the virus in the human population, is creation of the environment necessary to maximize the yield and spread of virus from cell to cell and from infected to uninfected individuals (reviewed in reference 38). Of these known genes, several play a significant role in abating or delaying a host response to infection. The earliest to be expressed is the UL41 gene which encodes a protein that is introduced into the cell in virions during infection (26, 27). This protein reduces the synthesis of host proteins by causing the destruction of mRNA in a rather nonspecific manner and therefore could be expected to reduce the synthesis of cellular proteins deleterious to viral replication (26, 27, 44).A second and very different approach to blocking host defense mechanisms is exemplified by infected cell protein 47 (ICP47). Proteosomal degradation of viral proteins could be expected to produce antigenic peptides which, if presented on the cell surface, could provoke a cytotoxic cell response early in infection and thus reduce viral yield. ICP47, an α protein made immediately after infection, blocks the presentation of antigenic peptides on the surface of the infected cells (20).The focus of this laboratory has been on a third viral pathway designed to block cellular response to infection. In cells infected with most viruses, the synthesis of complementary mRNA leads to activation of double-stranded RNA-dependent protein kinase R (PKR). This enzyme phosphorylates the α subunit of eukaryotic translation initiation factor 2 (eIF-2α) (23). A consequence of this phosphorylation is total shutoff of protein synthesis. This would be an example of a noble sacrifice of the infected cell for the sake of survival of the organism were it not for the fact that viruses, while activating the PKR kinase pathway by making double-stranded RNA, also express functions which block this host defense system (24, 6, 7, 10, 28, 30, 34). In the case of HSV-1, more than 50% of the viral DNA is represented late in infection in the form of cRNA (21, 25), and the gene whose product blocks the consequences of activation of PKR is γ134.5 (7). In the absence of the gene, eIF-2α is phosphorylated and protein synthesis is impaired beginning approximately 5 h after infection (7, 9). In its presence, protein synthesis continues unabated even though PKR is activated (9). Recent studies have shown that the carboxyl terminus of the γ134.5 gene binds to the protein phosphatase 1α (PP1) and redirects it to dephosphorylate eIF-2α (19). The effectiveness of the γ134.5-PP1 complex is apparent from the observation that the rate of dephosphorylation of eIF-2α in cells infected with wild-type virus is more than 1000 times that of uninfected cells or cells infected with the γ134.5 virus (5, 19).The studies described in this report concern another aspect of virus-induced block of the consequence of activation of PKR. Briefly, Mohr and Gluzman reported that serial passage of a γ134.5 mutant resulted in the selection of a compensatory mutation capable of sustained protein synthesis (35). A characteristic of the compensatory mutants isolated by Mohr and Gluzman is a deletion in the α47 gene resulting in the juxtaposition of the promoter of the α47 gene next to the 5′ end of US11, a late (γ2) viral gene. Preliminary studies of those mutants revealed that PKR was activated in cells infected with either the wild-type parent or the γ134.5 virus, but protein synthesis was unaffected in cells infected with wild-type virus or the mutant carrying the compensatory mutations (5, 18).In an attempt to define the phenotype of the virus carrying the compensatory mutation, we constructed a mutant lacking the γ134.5 and the US8 to -12 genes. This mutant, designated R5103, activated PKR and caused a shutoff of protein synthesis (5). We then inserted into the R5103 genome a DNA fragment consisting of the intact US10 gene and the US11 open reading frame fused to the α47 promoter. This virus, designated R5104, activated PKR but did not induce the shutoff of protein synthesis. Consistent with the conclusion of Mohr and Gluzman (35), the mutation maps in the domain inserted into the R5104 virus (5). Further studies yielded two significant observations. First, in stark contrast to lysates of cells infected with R5103 and other γ134.5 mutants, the lysates of R5104 virus failed to phosphorylate the α subunit of eIF-2 (5). Second, in striking contrast to lysates of wild-type virus-infected cells, the phosphatase activity of lysates of R5104 virus-infected cells specific for eIF-2α could not be differentiated from that of mock-infected cells or those of cells infected with other γ134.5 mutants (5). These results indicated that the compensatory mutation blocks PKR from phosphorylating eIF-2α.The studies summarized in this report focused on US11 protein. We report that in cells infected with the R5104 recombinant the US11 protein is made early in infection, that US11 protein interacts with PKR and blocks the phosphorylation of eIF-2α by activated PKR in in vitro assays, and that the effectiveness of the US11 protein is greater if the protein is present in the reaction before activation of PKR than if it is after PKR has been activated by the addition of poly(I-C). We also found that US11 is phosphorylated in the presence of activated PKR but not in its absence. We conclude that US11 may have been an ancient mechanism for blocking the effects of activated PKR and that it has been supplanted by acquisition of the carboxyl-terminal domain of the γ134.5 protein from a cellular gene. We also note that US11 protein made late in infection, after PKR has been activated, is ineffective.Relevant to this report are some of the properties of the US11 protein. US11 is one of the most abundant viral proteins expressed at late times in viral infection (22, 31). It binds mRNA in a sequence- and conformation-specific fashion (3941). In HSV-1-infected cells, US11 suppresses the synthesis of a truncated RNA colinear with the 5′ domain of the UL34 mRNA (40). The protein accumulates in nucleoli, in the cytoplasm in association with the 60S ribosomal subunit, and it is also packaged in virions (31, 37, 41). In newly infected cells, the US11 protein has been found associated with ribosomes (41).Recently a plethora of reports suggested that US11 may have novel functions not readily apparent from its localization in the infected cell. Thus, US11 protein has been reported to have functions similar to those of human immunodeficiency Tat and Rev proteins and has also been reported to complement Rev function in a Rev human immunodeficiency virus mutant (11). The US11 protein has been reported to confer thermotolerance and help restore protein synthesis in HeLa cells subjected to thermal injury (12).  相似文献   
994.
We have isolated an insertional mutant of Dictyostelium discoideum that aggregated rapidly and formed spores and stalk cells within 14 h of development instead of the normal 24 h. We have shown by parasexual genetics that the insertion is in the rdeA locus and have cloned the gene. It encodes a predicted 28 kDa protein (RdeA) that is enriched in charged residues and is very hydrophilic. Constructs with the DNA for the c-Myc epitope or for the green fluorescent protein indicate that RdeA is not compartmentalized. RdeA displays homology around a histidine residue at amino acid 65 with members of the H2 module family of phosphotransferases that participate in multistep phosphoryl relays. Replacement of this histidine rendered the protein inactive. The mutant is complemented by transformation with the Ypd1 gene of Saccharomyces cerevisiae, itself an H2 module protein. We propose that RdeA is part of a multistep phosphorelay system that modulates the rate of development.  相似文献   
995.
The electrostatic interaction between plastocyanin (PC) and cytochrome f (cyt f), electron transfer partners in photosynthesis was studied using Brownian dynamics (BD) simulations. By using the software package MacroDox, which implements the BD algorithm of Northrup et al. (Northrup, S. H., J. O. Boles, and J. C. L. Reynolds. 1987. J. Phys. Chem. 91:5991-5998), we have modeled the interaction of the two proteins based on crystal structures of poplar PC and turnip cyt f at pH 7 and a variety of ionic strengths. We find that the electrostatic attraction between positively charged residues (K58, K65, K187, and R209, among others) on cyt f and negatively charged residues (E43, D44, E59, and E60, among others) on PC steers PC into a single dominant orientation with respect to cyt f, and furthermore, that the single dominant orientation that we observe is one that we had predicted in our previous work (Pearson, D. C., E. L. Gross, and E. S. David. 1996. Biophys. J. 71:64-76). This dominant orientation permits the formation of hydrophobic interactions, which are not implemented in the MacroDox algorithm. This proposed complex between PC and cyt f implicates H87, a copper ligand on PC, as the residue that accepts electrons from the heme on cyt f (and possibly through Y1 as we proposed previously). We argue for the existence of this single dominant complex on the basis of observations that the most favorable orientations of the interaction between PC and cyt f, as determined by grouping successful BD trajectories on the basis of closest contacts of charged residues, tend to overlap one another and have very close distances between the metal centers on the two proteins (copper on PC, iron on cyt f). We use this knowledge to develop a model for PC/cyt f interaction that places a reaction between the two proteins occurring when the copper-to-iron distance is between 16 and 17 A. This reaction distance gives a good estimate of the experimentally observed rate constant for PC-cyt f interaction. Analysis of BD results as a function of ionic strength predicts an interaction that happens less frequently and becomes less specific as ionic strength increases.  相似文献   
996.
997.
Thrombospondin (TSP) 2, and its close relative TSP1, are extracellular proteins whose functions are complex, poorly understood, and controversial. In an attempt to determine the function of TSP2, we disrupted the Thbs2 gene by homologous recombination in embryonic stem cells, and generated TSP2-null mice by blastocyst injection and appropriate breeding of mutant animals. Thbs2−/− mice were produced with the expected Mendelian frequency, appeared overtly normal, and were fertile. However, on closer examination, these mice displayed a wide variety of abnormalities. Collagen fiber patterns in skin were disordered, and abnormally large fibrils with irregular contours were observed by electron microscopy in both skin and tendon. As a functional correlate of these findings, the skin was fragile and had reduced tensile strength, and the tail was unusually flexible. Mutant skin fibroblasts were defective in attachment to a substratum. An increase in total density and in cortical thickness of long bones was documented by histology and quantitative computer tomography. Mutant mice also manifested an abnormal bleeding time, and histologic surveys of mouse tissues, stained with an antibody to von Willebrand factor, showed a significant increase in blood vessels. The basis for the unusual phenotype of the TSP2-null mouse could derive from the structural role that TSP2 might play in collagen fibrillogenesis in skin and tendon. However, it seems likely that some of the diverse manifestations of this genetic disorder result from the ability of TSP2 to modulate the cell surface properties of mesenchymal cells, and thus, to affect cell functions such as adhesion and migration.  相似文献   
998.
999.
The electron-transport chain that catalyzes nitrite respiration with formate in Wolinella succinogenes consists of formate dehydrogenase, menaquinone and the nitrite reductase complex. The latter catalyzes nitrite reduction by menaquinol and is made up of NrfA and NrfH, two c-type cytochromes. NrfA is the catalytic subunit; its crystal structure is known. NrfH belongs to the NapC/NirT family of membrane-bound c-type cytochromes and mediates electron transport between menaquinol and NrfA. It is demonstrated here by MALDI MS that four heme groups are attached to NrfH. A Delta nrfH deletion mutant of W. succinogenes was constructed by replacing the nrfH gene with a kanamycin-resistance gene cartridge. This mutant did not form the NrfA protein, probably because of a polar effect of the mutation on nrfA expression. The nrfHAIJ gene cluster was restored by integration of an nrfH-containing plasmid into the genome of the Delta nrfH mutant. The resulting strain had wild-type properties with respect to growth by nitrite respiration and nitrite reductase activity. A mutant (stopH) that contained the nrfHAIJ locus with nrfH modified by two artificial stop codons near its 5' end produced wild-type amounts of NrfA in the absence of the NrfH protein. NrfA was located exclusively in the soluble cell fraction of the stopH mutant, indicating that NrfH acts as the membrane anchor of the NrfHA complex in wild-type bacteria. The stopH mutant did not grow by nitrite respiration and did not catalyze nitrite reduction by formate, indicating that the electron transport is strictly dependent on NrfH. The NrfH protein seems to be an unusual member of the NapC/NirT family as it forms a stable complex with its redox partner protein NrfA.  相似文献   
1000.
A cytoplasmic activity in mature oocytes responsible for second meiotic metaphase arrest was identified over 30 years ago in amphibian oocytes. In Xenopus oocytes CSF activity is initiated by the progesterone-dependent synthesis of Mos, a MAPK kinase kinase, which activates the MAPK pathway. CSF arrest is mediated by a sole MAPK target, the protein kinase p90Rsk which leads to inhibition of cyclin B degradation by the anaphase-promoting complex. Rsk phosphorylates and activates the Bub1 protein kinase, which may cause metaphase arrest due to inhibition of the anaphase-promoting complex (APC) by a conserved mechanism defined genetically in yeast and mammalian cells. CSF arrest in vertebrate oocytes by p90Rsk provides a potential link between the MAPK pathway and the spindle assembly checkpoint in the cell cycle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号