首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   196篇
  免费   8篇
  国内免费   1篇
  205篇
  2021年   2篇
  2020年   3篇
  2019年   2篇
  2018年   5篇
  2017年   4篇
  2016年   11篇
  2015年   7篇
  2014年   2篇
  2013年   5篇
  2012年   4篇
  2011年   4篇
  2010年   10篇
  2009年   7篇
  2008年   9篇
  2007年   6篇
  2006年   9篇
  2005年   10篇
  2004年   7篇
  2003年   9篇
  2002年   6篇
  2001年   4篇
  2000年   5篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   6篇
  1990年   9篇
  1989年   2篇
  1988年   4篇
  1987年   7篇
  1986年   7篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1976年   3篇
  1975年   1篇
  1974年   2篇
  1973年   4篇
  1972年   3篇
  1970年   1篇
  1969年   2篇
  1968年   2篇
  1967年   2篇
排序方式: 共有205条查询结果,搜索用时 15 毫秒
91.
Most studies of Alzheimer's disease (AD) have focused on a single precipitating alteration as the etiological event rather than global changes closely linked to aging. Recent evidence suggests that the most significant of these global changes are metabolic. Here we present data indicating that metabolic rate, nutrition, and neuronal size are all early indicators of AD. Understanding the cellular and molecular basis for these changes may open a new dimension to understanding AD.  相似文献   
92.
It has been widely accepted that vascular hypoperfusion induces oxidative stress and the outcome of this misbalance is brain energy failure. This abnormality leads to neuronal death which manifests as cognitive impairment and the development of brain pathology as in Alzheimer's disease (AD). It has been demonstrated that the AD brain is characterized by impairments in energy metabolism. We theorize that hypoperfusion induced mitochondrial failure plays a key role in the generation of reactive oxygen species, resulting in oxidative damage to brain cellular compartments, especially in the vascular endothelium and in selective population of neurons with high metabolic activity in the AD brain. All of these abnormalities have been found to occur before classic AD pathology inducing neuronal degeneration and amyloid deposition during the progression of AD. Therefore, expanding investigations into both the mechanisms behind amyloid beta (Abeta) deposition and the possible accelerating effects of environmental factors such as chronic hypoxia/reperfusion may open a new avenue for effective treatments of AD. Future studies examining the importance of mitochondrial pathobiology in brain cellular compartments provide insight not only into the better understanding of the neurodegenerative and/or cerebrovascular disease but also provide targets for treating these conditions.  相似文献   
93.
A full-size human antibody to Ebola virus was constructed by joining genes encoding the constant domains of the heavy and light chains of human immunoglobulin with the corresponding DNA fragments encoding variable domains of the single-chain antibody 4D1 specific to Ebola virus, which was chosen from a combinatorial phage display library of single-strand human antibodies. Two expression plasmids. pCH1 and pCL1, containing the artificial genes encoding the light and heavy chains of human immunoglobulin, respectively, were constructed. Their cotransfection into the human embryonic kidney cell line HEK293T provided the production of a full-size recombinant human antibody. The affinity constant for the antibody was estimated by solid-phase enzyme-linked immunoassay to be 7.7 x 10(7) +/- 1.5 x 10(7) M(-1). Like the parent single-chain antibody 4DI, the resulting antibody bound the nucleoprotein of Ebola virus and did not interact with the proteins of Marburg virus.  相似文献   
94.

Background

Nitric oxide (NO) and carbon monoxide (CO) in exhaled breath are considered obtainable biomarkers of physiologic mechanisms. Therefore, obtaining their measures simply, non-invasively, and repeatedly, is of interest, and was the purpose of the current study.

Methods

Expired NO (ENO) and CO (ECO) were measured non-invasively using a gas micro-analyzer on several strains of mice (C57Bl6, IL-10-/-, A/J, MKK3-/-, JNK1-/-, NOS-2-/- and NOS-3-/-) with and without allergic airway inflammation (AI) induced by ovalbumin systemic sensitization and aerosol challenge, compared using independent-sample t-tests between groups, and repeated measures analysis of variance (ANOVA) within groups over time of inflammation induction. ENO and ECO were also measured in C57Bl6 and IL-10-/- mice, ages 8–58 weeks old, the relationship of which was determined by regression analysis. S-methionyl-L-thiocitrulline (SMTC), and tin protoporphyrin (SnPP) were used to inhibit neuronal/constitutive NOS-1 and heme-oxygenase, respectively, and alter NO and CO production, respectively, as assessed by paired t-tests. Methacholine-associated airway responses (AR) were measured by the enhanced pause method, with comparisons by repeated measures ANOVA and post-hoc testing.

Results

ENO was significantly elevated in naïve IL-10-/- (9–14 ppb) and NOS-2-/- (16 ppb) mice as compared to others (average: 5–8 ppb), whereas ECO was significantly higher in naïve A/J, NOS-3-/- (3–4 ppm), and MKK3-/- (4–5 ppm) mice, as compared to others (average: 2.5 ppm). As compared to C57Bl6 mice, AR of IL-10-/-, JNK1-/-, NOS-2-/-, and NOS-3-/- mice were decreased, whereas they were greater for A/J and MKK3-/- mice. SMTC significantly decreased ENO by ~30%, but did not change AR in NOS-2-/- mice. SnPP reduced ECO in C57Bl6 and IL-10-/- mice, and increased AR in NOS-2-/- mice. ENO decreased as a function of age in IL-10-/- mice, remaining unchanged in C57Bl6 mice.

Conclusion

These results are consistent with the ideas that: 1) ENO is associated with mouse strain and knockout differences in NO production and AR, 2) alterations of ENO and ECO can be measured non-invasively with induction of allergic AI or inhibition of key gas-producing enzymes, and 3) alterations in AR may be dependent on the relative balance of NO and CO in the airway.  相似文献   
95.
Mutations in the mitochondrial protein kinase PINK1 are associated with autosomal recessive Parkinson disease (PD). We and other groups have reported that PINK1 activates Parkin E3 ligase activity both directly via phosphorylation of Parkin serine 65 (Ser65)—which lies within its ubiquitin‐like domain (Ubl)—and indirectly through phosphorylation of ubiquitin at Ser65. How Ser65‐phosphorylated ubiquitin (ubiquitinPhospho‐Ser65) contributes to Parkin activation is currently unknown. Here, we demonstrate that ubiquitinPhospho‐Ser65 binding to Parkin dramatically increases the rate and stoichiometry of Parkin phosphorylation at Ser65 by PINK1 in vitro. Analysis of the Parkin structure, corroborated by site‐directed mutagenesis, shows that the conserved His302 and Lys151 residues play a critical role in binding of ubiquitinPhospho‐Ser65, thereby promoting Parkin Ser65 phosphorylation and activation of its E3 ligase activity in vitro. Mutation of His302 markedly inhibits Parkin Ser65 phosphorylation at the mitochondria, which is associated with a marked reduction in its E3 ligase activity following mitochondrial depolarisation. We show that the binding of ubiquitinPhospho‐Ser65 to Parkin disrupts the interaction between the Ubl domain and C‐terminal region, thereby increasing the accessibility of Parkin Ser65. Finally, purified Parkin maximally phosphorylated at Ser65 in vitro cannot be further activated by the addition of ubiquitinPhospho‐Ser65. Our results thus suggest that a major role of ubiquitinPhospho‐Ser65 is to promote PINK1‐mediated phosphorylation of Parkin at Ser65, leading to maximal activation of Parkin E3 ligase activity. His302 and Lys151 are likely to line a phospho‐Ser65‐binding pocket on the surface of Parkin that is critical for the ubiquitinPhospho‐Ser65 interaction. This study provides new mechanistic insights into Parkin activation by ubiquitinPhospho‐Ser65, which could aid in the development of Parkin activators that mimic the effect of ubiquitinPhospho‐Ser65.  相似文献   
96.
Previously, we have determined the nucleotide and amino acid sequences of the variable domains of three mouse monoclonal antibodies specific to the individual epitopes of the Ebola virus glycoprotein: GPE118 (IgG), GPE325 (IgM) and GPE534 (IgG) [1]. In the present paper, chimeric Fab fragments of Fab118, Fab325, and Fab534 antibodies were obtained based on the variable domains of murine antibodies by attaching CH1 and CL constant regions of human kappa-IgG1 to them. The recombinant chimeric Fab fragments were synthesized in the heterologous expression system Escherichia coli, isolated and purified using metal chelate affinity chromatography. The immunochemical properties of the obtained Fab fragments were studied by immunoblotting techniques as well as indirect and competitive ELISA using recombinant Ebola virus proteins: EBOV rGPdTM (recombinant glycoprotein of Ebola hemorrhagic fever virus without the transmembrane domain), NP (nucleoprotein) and VP40 (structural protein). The identity of recombinant chimeric Fab fragments, as well as their specificity to the recombinant glycoprotein of Ebola hemorrhagic fever virus (EBOV GP) was proved. The results of indirect ELISA evidence the absence of immunological cross-reactivity to NP and VP40 proteins of Ebola virus. The dissociation constants of the antigen-antibody complex K d equal to 5.0, 1.0 and 1.0 nM for Fab118, Fab325 and Fab534, respectively, were determined; they indicate high affinity of the obtained experimental samples to EBOV GP. The epitope specificity of Fab fragments was studied using a panel of commercial neutralizing antibodies. It was found that all studied antibodies to EBOV GP are targeted to different epitopes, while the epitopes of the recombinant chimeric Fab fragments and original murine monoclonal antibodies (mAbs) coincide. All the obtained and studied mAbs to EBOV GP are specific to epitopes that coincide or overlap the epitopes of three commercial neutralizing mAbs to Ebola virus: epitopes Fab118 and Fab325 overlap the epitope of the known commercial mAb h13F6; Fab325 epitope also overlaps mAb c6D8 epitope; Fab534 epitope is located near mAb KZ52 conformational epitope, in the formation of which amino acid residues of GP1 and GP2 domains of EBOV GP are involved.  相似文献   
97.
Rabies virus is a prototypical neurotropic virus that causes one of the most dangerous zoonotic diseases in humans. Humanized or fully human monoclonal antibodies (mAb) that neutralize rabies virus would be the basis for powerful post-exposure prophylaxis of rabies in humans, having several significant benefits in comparison with human or equine rabies polyclonal immunoglobulins. The most advanced antibodies should broadly neutralize natural rabies virus isolates, bind with conserved antigenic determinants of the rabies virus glycoprotein, and show high neutralizing potency in assays in vivo. The antibodies should recognize nonoverlapping epitopes if they are used in combination. This review focuses on basic requirements for anti-rabies therapeutic antibodies. The urgency in the search for novel rabies post-exposure prophylaxis and methods of development of anti-rabies human mAb cocktail are discussed. The rabies virus structure and pathways of its penetration into the nervous system are also briefly described.  相似文献   
98.
The catalytic properties of organophosphate hydrolase (OPH) containing a hexahistidine tag His6 (His6-OPH) and purified to 98% homogeneity were investigated. The pH optimum of enzymatic activity and isoelectric point of His6-OPH, which were shown to be 10.5 and 8.5, respectively, are shifted to the alkaline range as compared to the same parameters of the native OPH. The recombinant enzyme possessed improved catalytic activity towards S-containing substrates: the catalytic efficiency of methylparathion hydrolysis by His6-OPH is 4.2 x 10(6) M(-1) x sec(-1), whereas by native OPH it is 3.5 x 10(5) M(-1) x sec(-1).  相似文献   
99.
Evolution of duplicate genes in a tetraploid animal, Xenopus laevis   总被引:5,自引:1,他引:5  
To understand the evolution of duplicate genes, we compared rates of nucleotide substitution between 17 pairs of nonallelic duplicated genes in the tetraploid frog Xenopus laevis with rates between the orthologous loci of human and rodent. For all duplicated X. laevis genes, the number of synonymous substitutions per site (dS) was greater than the number of nonsynonymous substitutions per site (dN), indicating that these genes are subject to purifying selection. There was also a significant positive correlation (r = 0.915) between dN for the X. laevis genes and dN for the mammalian genes, suggesting that, at the amino acid level, the X. laevis genes and the mammalian genes are under similar constraints. Results of relative-rate tests showed nearly equal rates of nonsynonymous substitution in each copy of the X. laevis genes; apparently there are similar constraints on both copies. No correlation was found between dS for the X. laevis genes and dS for the mammalian genes. There was a significant positive correlation both between members of pairs of duplicated X. laevis genes (r = 0.951) and between human and rodent orthologues (r = 0.854) with respect to third- position G+C content but no such relationship between the X. laevis genes and either of their mammalian orthologues. The results indicate that both copies of a duplicate gene can be subject to purifying selection and thus support the hypothesis of selection against all genotypes containing a null allele at either of two duplicate loci.   相似文献   
100.

Background  

There are two different theories about the development of the genetic code. Woese suggested that it was developed in connection with the amino acid repertoire, while Crick argued that any connection between codons and amino acids is only the result of an "accident". This question is fundamental to understand the nature of specific protein-nucleic acid interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号