首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1498篇
  免费   169篇
  国内免费   1篇
  1668篇
  2016年   27篇
  2015年   39篇
  2014年   31篇
  2013年   41篇
  2012年   60篇
  2011年   40篇
  2010年   46篇
  2009年   43篇
  2008年   57篇
  2007年   53篇
  2006年   60篇
  2005年   43篇
  2004年   40篇
  2003年   48篇
  2002年   47篇
  2001年   34篇
  2000年   35篇
  1999年   30篇
  1998年   37篇
  1997年   20篇
  1996年   21篇
  1995年   15篇
  1994年   15篇
  1993年   17篇
  1992年   39篇
  1991年   39篇
  1990年   31篇
  1989年   25篇
  1988年   35篇
  1987年   29篇
  1986年   24篇
  1985年   31篇
  1983年   21篇
  1982年   21篇
  1981年   18篇
  1980年   17篇
  1979年   22篇
  1978年   23篇
  1977年   18篇
  1976年   15篇
  1975年   21篇
  1974年   30篇
  1973年   25篇
  1972年   27篇
  1971年   17篇
  1970年   19篇
  1969年   17篇
  1968年   24篇
  1967年   19篇
  1966年   19篇
排序方式: 共有1668条查询结果,搜索用时 15 毫秒
971.
Genomic imprinting is an epigenetic phenomenon leading to parent-of-origin specific differential expression of maternally and paternally inherited alleles. In plants, genomic imprinting has mainly been observed in the endosperm, an ephemeral triploid tissue derived after fertilization of the diploid central cell with a haploid sperm cell. In an effort to identify novel imprinted genes in Arabidopsis thaliana, we generated deep sequencing RNA profiles of F1 hybrid seeds derived after reciprocal crosses of Arabidopsis Col-0 and Bur-0 accessions. Using polymorphic sites to quantify allele-specific expression levels, we could identify more than 60 genes with potential parent-of-origin specific expression. By analyzing the distribution of DNA methylation and epigenetic marks established by Polycomb group (PcG) proteins using publicly available datasets, we suggest that for maternally expressed genes (MEGs) repression of the paternally inherited alleles largely depends on DNA methylation or PcG-mediated repression, whereas repression of the maternal alleles of paternally expressed genes (PEGs) predominantly depends on PcG proteins. While maternal alleles of MEGs are also targeted by PcG proteins, such targeting does not cause complete repression. Candidate MEGs and PEGs are enriched for cis-proximal transposons, suggesting that transposons might be a driving force for the evolution of imprinted genes in Arabidopsis. In addition, we find that MEGs and PEGs are significantly faster evolving when compared to other genes in the genome. In contrast to the predominant location of mammalian imprinted genes in clusters, cluster formation was only detected for few MEGs and PEGs, suggesting that clustering is not a major requirement for imprinted gene regulation in Arabidopsis.  相似文献   
972.
Abstract

Singlet oxygen (1O2) is a highly reactive form of molecular oxygen that may harm living systems by oxidizing critical cellular macromolecules. A soluble protein from Saccharomyces cerevisiae specifically provides protection against a thiol-containing metal-catalyzed oxidation system (thiol/Fe3+/O2) but not against an oxidation system without thiol. This 25 kDa protein acts as a peroxidase but requires the NADPH-dependent thioredoxin system or a thiol-containing intermediate, and was named thioredoxin peroxidase (TPx). The role of TPx in the cellular defense against oxidative stress induced by singlet oxygen was investigated in Escherichia coli containing an expression vector with a yeast genomic DNA fragment that encodes TPx and mutant in which the catalytically essential amino acid cysteine (Cys-47) has been replaced with alanine by a site-directed mutagenesis. Upon exposure to methylene blue and visible light, which generates singlet oxygen, there was a distinct difference between the two strains in regard to growth kinetics, viability, the accumulation of oxidized proteins and lipids, and modulation of activities of superoxide dismutase and catalase. The results suggest that TPx may play an important protective role in a singlet oxygen-mediated cellular damage.  相似文献   
973.

Objective

The aim of this study was to determine whether hypercholesterolemia increases articular damage in a rabbit model of chronic arthritis.

Methods

Hypercholesterolemia was induced in 18 rabbits by administrating a high-fat diet (HFD). Fifteen rabbits were fed normal chow as controls. Chronic antigen-induced arthritis (AIA) was induced in half of the HFD and control rabbits, previously immunized, by intra-articular injections of ovalbumin. After sacrifice, lipid and systemic inflammation markers were analyzed in blood serum. Synovium was analyzed by Krenn score, multinucleated cell counting, immunohistochemistry of RAM11 and CD31, and TNF-α and macrophage chemoattractant protein-1 (MCP-1) gene expression. Active bone resorption was assessed by protein expression of receptor activator of nuclear factor kappa-B ligand (RANKL), osteoprotegerin (OPG) and quantification of cathepsin K, contact surface and the invasive area of pannus into bone.

Results

Rabbits receiving the HFD showed higher total serum cholesterol, HDL, triglycerides and CRP levels than rabbits fed a normal diet. Synovitis score was increased in HFD, and particularly in AIA and AIA + HFD groups. AIA + HFD synovium was characterized by a massive infiltration of RAM11+ cells, higher presence of multinucleated foam cells and bigger vascularization than AIA. Cathepsin K+ osteoclasts and the contact surface of bone resorbing pannus were also increased in rabbits with AIA + HFD compared with AIA alone. Synovial TNF-α and MCP-1 gene expression was increased in AIA and HFD rabbits compared with healthy animals. RANKL protein expression in AIA and AIA + HFD groups was higher compared with either HFD or normal groups.

Conclusions

This experimental model demonstrates that hypercholesterolemia increments joint tissue damage in chronic arthritis, with foam macrophages being key players in this process.  相似文献   
974.
In 2009, the Marine Biodiscovery Laboratory was set-up at the Marine Institute with funds from the Marine Institute and the Beaufort Marine Biodiscovery Research Programme. The Marine Biodiscovery Laboratory has already processed over 130 marine specimens from coastal zones and from the Deep Sea (≤3,000 m) within the Marine Irish Exclusive Economic Zone. Beaufort Biodiscovery funded taxonomists are involved in species identification and elucidation of evolutionary relationships. The project approach links sampling, systematics, extraction, microbial metagenomics and biomaterials. The Laboratory consists of approximately 56 m2 including an extraction and a bioassay suite. The Laboratory samples and assesses marine biological diversity geared towards developing natural products for drug discovery, advanced material applications and bio-medical devices. Samples are tracked from sample log-into right through to extraction and bioassay using a customised Marine Biodiscovery Database. The extraction procedure is described along with the anti-bacterial bioassay selected for routine use. The Marine Biodiscovery Database manages the data generated and links the data collected by the project’s stakeholders to existing biodiversity, genetic and chemical resources. The system uses in-house developed software tools to merge biodiscovery data collected with other MI resources and external databases and for the data mining and visualisation of biogeographical, genetic and chemical information aimed at the identification of potential biodiversity and bioactivity “hotspots”.  相似文献   
975.
Epidermal Langerhans cells (LC) are potent APCs surveying the skin. They are crucial regulators of T cell activation in the context of inflammatory skin disease and graft-versus-host disease (GVHD). In contrast to other dendritic cell subtypes, murine LC are able to reconstitute after local depletion without the need of peripheral blood-derived precursors. In this study, we introduce an experimental model of human skin grafted to NOD-SCID IL2Rγ(null) mice. In this model, we demonstrate that xenografting leads to the transient loss of LC from the human skin grafts. Despite the lack of a human hematopoietic system, human LC repopulated the xenografts 6 to 9 wk after transplantation. By staining of LC with the proliferation marker Ki67, we show that one third of the replenishing LC exhibit proliferative activity in vivo. We further used the skin xenograft as an in vivo model for human GVHD. HLA-disparate third-party T cells stimulated with skin donor-derived dendritic cells were injected intravenously into NOD-SCID IL2Rγ(null) mice that had been transplanted with human skin. The application of alloreactive T cells led to erythema and was associated with histological signs of GVHD limited to the transplanted human skin. The inflammation also led to the depletion of LC from the epidermis. In summary, we provide evidence that human LC are able to repopulate the skin independent of blood-derived precursor cells and that this at least partly relates to their proliferative capacity. Our data also propose xeno-transplantation of human skin as a model system for studying the role of skin dendritic cells in the efferent arm of GVHD.  相似文献   
976.

Background

Hyperresponsiveness to inhaled non-infectious microbial particles (NIMPs) has been associated with illnesses in the airways. Hypersensitivity pneumonitis (HP) is considered to be the prototype for these NIMPs-related diseases; however, there is no consensus on the definitions or diagnostic criteria for HP and the spectrum of related illnesses.

Methods and Findings

In order to identify the possible diagnostic markers for illnesses associated with NIMPs in alveolar lining fluid, we performed a proteomic analysis using a two-dimensional difference gel electrophoresis on bronchoalveolar lavage (BAL) fluid from patients with exposure to NIMPs in the context of damp building-related illness (DBRI) or conditions on the borderline to acute HP, designated here as agricultural type of microbial exposure (AME). Samples from patients with HP and sarcoidosis (SARC) were included for reference. Results were compared to results of healthy subjects (CTR). Western blot was used for validation of potential marker proteins from BAL fluid and plasma. Protein expression patterns suggest a close similarity between AME and HP, while DBRI was similar to CTR. However, in DBRI the levels of the inflammation associated molecules galectin-3 and alpha-1-antitrypsin were increased. A novel finding emerging from this study was the increases of semenogelin levels in BAL fluid from patients with AME, HP and SARC. Histone 4 levels were increased in AME, HP and SARC. Elevated plasma levels of histone 2B were detected in HP and SARC, suggesting it to be a potential blood indicator for inflammatory diseases of the lungs.

Conclusions

In this study, the proteomic changes in bronchoalveolar lavage of DBRI patients were distinct from other NIMP exposure associated lung diseases, while changes in AME overlapped those observed for HP patient samples. Some of the proteins identified in this study, semenogelin and histone 4, could function as diagnostic markers for differential diagnosis between DBRI and HP-like conditions.  相似文献   
977.

Background

New tools are required for the diagnosis of pre-symptomatic leprosy towards further reduction of disease burden and its associated reactions. To address this need, two new skin test antigens were developed to assess safety and efficacy in human trials.

Methods

A Phase I safety trial was first conducted in a non-endemic region for leprosy (U.S.A.). Healthy non-exposed subjects (n = 10) received three titrated doses (2.5 µg, 1.0 µg and 0.1 µg) of MLSA-LAM (n = 5) or MLCwA (n = 5) and control antigens [Rees MLSA (1.0 µg) and saline]. A randomized double blind Phase II safety and efficacy trial followed in an endemic region for leprosy (Nepal), but involved only the 1.0 µg (high dose) and 0.1 µg (low dose) of each antigen; Tuberculin PPD served as a control antigen. This Phase II safety and efficacy trial consisted of three Stages: Stage A and B studies were an expansion of Phase I involving 10 and 90 subjects respectively, and Stage C was then conducted in two parts (high dose and low dose), each enrolling 80 participants: 20 borderline lepromatous/lepromatous (BL/LL) leprosy patients, 20 borderline tuberculoid/tuberculoid (BT/TT) leprosy patients, 20 household contacts of leprosy patients (HC), and 20 tuberculosis (TB) patients. The primary outcome measure for the skin test was delayed type hypersensitivity induration.

Findings

In the small Phase I safety trial, reactions were primarily against the 2.5 µg dose of both antigens and Rees control antigen, which were then excluded from subsequent studies. In the Phase II, Stage A/B ramped-up safety study, 26% of subjects (13 of 50) showed induration against the high dose of each antigen, and 4% (2 of 50) reacted to the low dose of MLSA-LAM. Phase II, Stage C safety and initial efficacy trial showed that both antigens at the low dose exhibited low sensitivity at 20% and 25% in BT/TT leprosy patients, but high specificity at 100% and 95% compared to TB patients. The high dose of both antigens showed lower specificity (70% and 60%) and sensitivity (10% and 15%). BL/LL leprosy patients were anergic to the leprosy antigens.

Interpretation

MLSA-LAM and MLCwA at both high (1.0 µg) and low (0.1 µg) doses were found to be safe for use in humans without known exposure to leprosy and in target populations. At a sensitivity rate of 20–25% these antigens are not suitable as a skin test for the detection of the early stages of leprosy infection; however, the degree of specificity is impressive given the presence of cross-reactive antigens in these complex native M. leprae preparations.

Trial Registration

ClinicalTrails.gov NCT01920750 (Phase I), NCT00128193 (Phase II)  相似文献   
978.
979.
980.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号