首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   230篇
  免费   24篇
  国内免费   1篇
  2023年   1篇
  2022年   1篇
  2021年   5篇
  2020年   1篇
  2019年   5篇
  2018年   2篇
  2017年   7篇
  2016年   12篇
  2015年   7篇
  2014年   11篇
  2013年   6篇
  2012年   18篇
  2011年   13篇
  2010年   16篇
  2009年   16篇
  2008年   16篇
  2007年   13篇
  2006年   7篇
  2005年   11篇
  2004年   7篇
  2003年   12篇
  2002年   5篇
  2001年   5篇
  2000年   4篇
  1999年   1篇
  1998年   11篇
  1997年   7篇
  1996年   4篇
  1995年   1篇
  1994年   5篇
  1993年   7篇
  1992年   2篇
  1990年   2篇
  1988年   2篇
  1987年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1975年   2篇
  1974年   1篇
  1933年   1篇
排序方式: 共有255条查询结果,搜索用时 15 毫秒
51.
We report the use of electrospray ionization (ESI) mass spectrometry (MS) in conjunction with online rapid mixing to monitor the kinetics of acid-induced ferrihemoglobin denaturation. Under equilibrium conditions, the hemoglobin mass spectrum is dominated by the intact heterotetramer. Dimeric and monomeric species are also observed at lower intensities. In addition, ionic signals corresponding to hexameric (tetramer-dimer) and octameric (tetramer x 2) hemoglobin species are observed. These complexes may represent weak solution-phase assemblies. The acid-induced denaturation process was monitored for reaction time ranging from 9 ms to approximately 3 s. The data obtained were subjected to a global analysis procedure which simultaneously fit all kinetic (ESI-MS intensity vs time) profiles to multiexponential expressions. Results of the global analysis are consistent with the coexistence of two subpopulations of tetrameric hemoglobin which differ in their disassembly rates and ESI charge states. The higher-charge state tetramer ions preferentially dissociate via a rapid pathway (tau(1) = 51 ms), resulting in the transient formation of a heme-saturated dimer, holo-alpha-globin, and a heme-deficient dimer. The latter is shown by MS/MS to be comprised of a heme-bound alpha-subunit complexed with an apo-beta-chain. The slow-decaying tetramer population, apparent at a slightly lower average charge state, breaks down into its monomeric constituents with no observable intermediate species (tau(2) = 390 ms). Surprisingly, unfolded apo-alpha-globin is formed more rapidly than unfolded apo-beta-globin. The appearance of the latter occurs with a relaxation time tau(3) of 1.2 s. It is postulated that accumulation of unfolded apo-beta-globin is delayed by transient population of an undetected unfolding intermediate.  相似文献   
52.
Bioluminescence from the lux-based bacterial reporter Pseudomonas fluorescens HK44 was experimentally investigated under growth substrate-rich and limiting conditions in batch, continuous stirred tank (CSTR), and turbidostat reactors. A mechanistically based, mathematical model was developed to describe bioluminescence based on 1) production and decay of catalytic enzymes, and 2) reactant cofactor availability. In the model, bioluminescence was a function of inducer, growth substrate, and biomass concentration. A saturational dependence on growth substrate concentration accommodated dependence on cofactor availability and inducer concentration to accommodate enzyme production was incorporated in the model. Under growth substrate and inducer limiting conditions in the batch reactor and CSTR, bioluminescence was found to decrease in response to cellular energy limitations. The effective lux system enzyme decay rate was determined in independent measurements to be 0.35 hr(-1) and the model captured most of the bioluminescent behavior, except at long growth times and high cell density.  相似文献   
53.
Cationic peanut peroxidase (CP) was isolated from peanut (Arachis hypogaea) cell suspension culture medium. CP is a glycoprotein with three N-linked glycan sites at Asn60, Asn144, and Asn185. ESI-MS of the intact purified protein reveals the microheterogeneity of the glycans. Tryptic digestion of CP gave a near complete sequence coverage by ESI-MS. The glycopeptides from the tryptic digestion were separated by RP HPLC identified by ESI-MS and the structure of the glycan chains determined by ESI-MS/MS. The glycans are large structures of up to 16 sugars, but most of their non-reducing ends have been modified giving a mixture of shorter chains at each site. Good agreement was found with the one glycan previously analyzed by (1)H NMR. This work is the basis for the future studies on the role of the glycans on stability and folding of CP and is another example of a detailed structural characterization of complex glycoproteins by mass spectrometry.  相似文献   
54.
Choline acetyltransferase synthesizes acetylcholine in cholinergic neurons. In the brain, these neurons are especially vulnerable to effects of beta-amyloid (A beta) peptides. Choline acetyltransferase is a substrate for several protein kinases. In the present study, we demonstrate that short term exposure of IMR32 neuroblastoma cells expressing human choline acetyltransferase to A beta-(1-42) changes phosphorylation of the enzyme, resulting in increased activity and alterations in its interaction with other cellular proteins. Using mass spectrometry, we identified threonine 456 as a new phosphorylation site in choline acetyltransferase from A beta-(1-42)-treated cells and in purified recombinant ChAT phosphorylated in vitro by calcium/calmodulin-dependent protein kinase II (CaM kinase II). Whereas phosphorylation of choline acetyltransferase by protein kinase C alone caused a 2-fold increase in enzyme activity, phosphorylation by CaM kinase II alone did not alter enzyme activity. A 3-fold increase in choline acetyltransferase activity was found with coordinate phosphorylation of threonine 456 by CaM kinase II and phosphorylation of serine 440 by protein kinase C. This phosphorylation combination was observed in choline acetyltransferase from A beta-(1-42)-treated cells. Treatment of cells with A beta-(1-42) resulted in two phases of activation of choline acetyltransferase, the first within 30 min and associated with phosphorylation by protein kinase C and the second by 10 h and associated with phosphorylation by both CaM kinase II and protein kinase C. We also show that choline acetyltransferase from A beta-(1-42)-treated cells co-immunoprecipitates with valosin-containing protein, and mutation of threonine 456 to alanine abolished the A beta-(1-42)-induced effects. These studies demonstrate that A beta-(1-42) can acutely regulate the function of choline acetyltransferase, thus potentially altering cholinergic neurotransmission.  相似文献   
55.
56.
57.
58.
The genus Ceratocystis sensu stricto includes important fungal pathogens of woody and herbaceous plants. This genus is distinguished from species in Ceratocystis sensu lato by the presence of Chalara anamorphs. Ascospore shape has been used extensively in delineating Ceratocystis taxa, which show a large variety of ascospore shapes. Sequence analysis of one region of he 18S ribosomal RNA subunit and two regions of the 28S ribosomal RNA subunit showed that there was a majority of multiple substitutions at nucleotide sites and that there was a low transition/transversion ratio, T = 0.72. Both of these results suggest that these are well established, old species. Ascospore morphology, for the most part, was not congruent with the molecular phylogeny, and the use of morphological characters may be misleading in the taxonomy of these species.   相似文献   
59.
60.
Goblet cells were visualized in impression cytology specimens from bulbar conjunctiva of the rabbit eye using Giemsa staining. Highly magnified images were used to generate outlines of the goblet cells and their characteristic eccentric nuclei. Using sets of 10 cells from 15 cytology specimens, I found that the longest dimension of the goblet cells averaged 16.7 ± 2.3 μm, the shortest dimension averaged 14.4 ± 1.8 μm and the nucleus averaged 6.3 ± 0.8 μm. The goblet cells were ellipsoid in shape and the longest:shortest cell dimension ratio averaged 1.169 ± 0.091. The goblet cell areas ranged from 108 to 338 μm2 (average 193 ± 50 μm2). The area could be predicted reliably from the longest and shortest dimensions (r2 = 0.903). The areas of goblet cell nuclei were 15–58 μm2 (average 33 ± μm2) and the nucleus:cytoplasm area fraction was predictably greater in smaller goblet cells and less in the larger goblet cells (Spearman correlation = 0.817). The nuclei were estimated to occupy an average of 9.5% of the cell volume. The differences in size, shape and nucleus:cytoplasm ratio may reflect differences in goblet cell maturation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号