首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   230篇
  免费   25篇
  国内免费   1篇
  2023年   1篇
  2022年   1篇
  2021年   5篇
  2020年   1篇
  2019年   5篇
  2018年   3篇
  2017年   7篇
  2016年   12篇
  2015年   7篇
  2014年   11篇
  2013年   6篇
  2012年   18篇
  2011年   13篇
  2010年   16篇
  2009年   16篇
  2008年   16篇
  2007年   13篇
  2006年   7篇
  2005年   11篇
  2004年   7篇
  2003年   12篇
  2002年   5篇
  2001年   5篇
  2000年   4篇
  1999年   1篇
  1998年   11篇
  1997年   7篇
  1996年   4篇
  1995年   1篇
  1994年   5篇
  1993年   7篇
  1992年   2篇
  1990年   2篇
  1988年   2篇
  1987年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1975年   2篇
  1974年   1篇
  1933年   1篇
排序方式: 共有256条查询结果,搜索用时 250 毫秒
121.
ABSTRACT: BACKGROUND: Traditional medicine (TM) occupies a special place in the management of diseases in Uganda. Not with standing the many people relying on TM, indigenous knowledge (IK) related to TM is getting steadily eroded. To slow down this loss it is necessary to document and conserve as much of the knowledge as possible. This study was conducted to document the IK relevant to traditional medicine in the districts of Mukono, Nakapiripirit, Kanungu and Pallisa, in Uganda. METHODS: An ethnobotanical survey was conducted between October 2008 and February 2009 using techniques of key informant interviews and household interviews. RESULTS: The common diseases and conditions in the four districts include malaria, cough, headache, diarrhea, abdominal pain, flu, backache and eye diseases. Respondents stated that when they fall sick they self medicate using plant medicines or consult western-trained medicine practitioners. Self medication using herbal medicines was reported mostly by respondents of Nakapiripirit and Mukono. Respondents have knowledge to treat 78 ailments using herbal medicines. 44 species, mentioned by three or more respondents have been prioritized. The most frequently used part in herbal medicines is the leaf, followed by the stem and root. People sometime use animal parts, soil, salt and water from a grass roof, in traditional medicines. Herbal medicines are stored for short periods of time in bottles. The knowledge to treat ailments is acquired from parents and grandparents. Respondents' age and tribe appears to have a significant influence on knowledge of herbal medicine, while gender does not. CONCLUSION: This survey has indicated that IK associated with TM stills exists and that TM is still important in Uganda because many people use it as a first line of health care when they fall sick. Age and tribe influence the level of IK associated with herbal medicine, but gender does not.  相似文献   
122.
After their formation at the cell surface, phagosomes become fully functional through a complex maturation process involving sequential interactions with various intracellular organelles. In the last decade, series of data indicated that some of the phagosome functional properties occur in specialized membrane microdomains. The molecules associated with membrane microdomains, as well as the organization of these structures during phagolysosome biogenesis are largely unknown. In this study, we combined proteomics and bioinformatics analyses to characterize the dynamic association of proteins to maturing phagosomes. Our data indicate that groups of proteins shuffle from detergent-soluble to detergent-resistant membrane microdomains during maturation, supporting a model in which the modulation of the phagosome functional properties involves an important reorganization of the phagosome proteome by the coordinated spatial segregation of proteins.Phagocytosis, the mechanism by which large particles are internalized, leads to the formation of phagosomes, a specialized organelle in which the engulfed material is degraded (1, 2). In mammals, various cells including macrophages, neutrophils and dendritic cells display remarkable phagocytic activities, rapidly eliminating microorganisms, foreign inert particles, and apoptotic cells. The killing of microorganisms by professional phagocytes precludes the emergence of infectious diseases. This innate immune process is followed by the degradation of microbes in a highly concentrated mixture of hydrolases, activated by the acidic pH generated in the phagosome lumen, generating antigenic peptides that are displayed at the cell surface, enabling their recognition by T lymphocytes (3). The peptides not loaded on MHC molecules are fully degraded in phagolysosomes and the end products are likely recycled from phagosomes by a variety of transporters (1). The establishment of these functional properties involves a complex remodeling of phagosomes, referred to as phagolysosome biogenesis (4, 5). This highly regulated process requires the fusion of nascent phagosomes with trans Golgi-derived vesicles, early endosomes, late endosomes and ultimately lysosomes (1, 2). These fusion events are believed to alter significantly the proteome of phagosomes during phagolysosome biogenesis and regulate their functional properties (6).The capacity to kill and degrade microbes is one of the many functions that phagosomes acquire during phagolysosome biogenesis. In a previous study, we identified more than 140 proteins associated with phagosomes (7), leading to the proposal of novel mechanisms to explain phagosomal functions such as antigen cross-presentation (8). This proteomics study also shown the presence on phagosomes of proteins known to segregate into lipid rafts at the cell surface, such as flotillin-1 and prohibitin, leading to the proposal that membrane microdomains might also assemble on phagosomes. At the plasma membrane, these structures constitute foci of specialized functions, notably for signal transduction (9). Further biochemical and morphological analyses confirmed the presence of membrane microdomains on phagosomes (10). The role of membrane microdomains and the molecular nature of these structures in phagosomes is still poorly understood. Recent data indicated that two phagosomal protein complexes, V-ATPase and NADPH oxidase may use membrane microdomains as assembly platforms (11). Furthermore, the potential involvement of phagosome microdomains in innate immunity was highlighted by the finding that at least two unrelated pathogens, the Gram-negative bacteria Brucella and the intracellular parasite Leishmania donovani, target phagosome lipid rafts as a strategy to evade host-defense mechanisms (1214). Hence, the molecular characterization of the detergent-soluble and -insoluble fractions isolated from phagosomes should provide unique insights into the mechanisms used by pathogens to alter the functional properties of this organelle. Different approaches have been used to study membrane microdomains, including imaging techniques such as fluorescence resonance energy transfer, fluorescence photoactivation localization microscopy, as well as cell fractionation procedures using non-ionic detergents to enrich detergent-resistant membrane domains (15). Imaging approaches highlighted the fact that cholesterol-enriched membrane microdomains are dynamic microscopic structures of less than 20 nm in range. On the other hand, detergent-based fractionation approaches have been extensively used to identify key components of membrane microdomains, including series of signaling factors (1618). Although the exact nature and the level of correspondence of the membrane microdomains studied by the morphological and biochemical approaches is still actively debated, similar sets of proteins have been identified in these structures (15).In the present study we used quantitative proteomics approach to characterize, for the first time, the modifications of lipid rafts proteins occurring during the biogenesis of an intracellular organelle. Our data indicate that segregation of sets of proteins in sub-regions of the phagosome membrane occurs throughout the biogenesis and maturation of phagolysosome, introducing the concept that spatiotemporal reorganization of the phagosome proteome plays a key role in the establishment of the functional properties of this organelle.  相似文献   
123.
The cellular microenvironment comprises soluble factors, support cells, and components of the extracellular matrix (ECM) that combine to regulate cellular behavior. Pluripotent stem cells utilize interactions between support cells and soluble factors in the microenvironment to assist in the maintenance of self-renewal and the process of differentiation. However, the ECM also plays a significant role in shaping the behavior of human pluripotent stem cells, including embryonic stem cells (hESCs) and induced pluripotent stem cells. Moreover, it has recently been observed that deposited factors in a hESC-conditioned matrix have the potential to contribute to the reprogramming of metastatic melanoma cells. Therefore, the ECM component of the pluripotent stem cell microenvironment necessitates further analysis.In this study we first compared the self-renewal and differentiation properties of hESCs grown on Matrigel™ pre-conditioned by hESCs to those on unconditioned Matrigel™. We determined that culture on conditioned Matrigel™ prevents differentiation when supportive growth factors are removed from the culture medium. To investigate and identify factors potentially responsible for this beneficial effect, we performed a defined SILAC MS-based proteomics screen of hESC-conditioned Matrigel™. From this proteomics screen, we identified over 80 extracellular proteins in matrix conditioned by hESCs and induced pluripotent stem cells. These included matrix-associated factors that participate in key stem cell pluripotency regulatory pathways, such as Nodal/Activin and canonical Wnt signaling. This work represents the first investigation of stem-cell-derived matrices from human pluripotent stem cells using a defined SILAC MS-based proteomics approach.The two defining characteristics of human embryonic stem cells (hESCs),1 self-renewal and pluripotency, are maintained by a delicate balance of intracellular and extracellular signaling processes. Extracellular regulation is primarily the result of changes in the microenvironment surrounding the cells during growth in vitro or in vivo. HESCs interact with this “niche ” through support cells, extracellular matrix (ECM) components, and autocrine/paracrine signaling (reviewed in Refs. 13). Modulation of any of these supportive elements individually or in combination has been used extensively to alter hESC behavior (13).The culture of hESCs, as well as that of human induced pluripotent stem cells (hiPSCs), is conventionally performed on a layer of irradiated mouse embryonic fibroblast cells (MEFs). These MEFs are believed to promote the maintenance of hESCs and hiPSCs through the secretion of beneficial support proteins and cytokines into the soluble microenvironment. A number of proteomic studies have been conducted that examine the secretome of feeder-cell layers in an attempt to elucidate proteins and pathways essential for hESC and hiPSC survival (47). Alternatively, hESCs and hiPSCs can be cultured in feeder-free conditions in the absence of support cells. In feeder-free conditions, hESCs and hiPSCs are most often grown on the basement membrane matrix Matrigel™ in medium that has been previously conditioned by MEFs (MEF-CM). Matrigel™ is a gelatinous mixture that is secreted by Engelbreth-Holm-Swarm mouse sarcoma cells (8). Although recent studies have proposed that a variety of defined matrices can support the growth of hESCs and hiPSCs, few of these can maintain a wide range of stem cell lines and therefore are typically not used in place of Matrigel™. The properties of Matrigel™ that make it such an effective matrix for hESC and hiPSC culture remain poorly understood. Because of the complexity of matrices like Matrigel™, the majority of proteomic studies that examine the hESC and hiPSC microenvironment have focused on contributions from support cells and soluble extracellular factors.The ECM is typically a complex network of structural proteins and glycosaminoglycans that function to support cells through the regulation of processes such as adhesion and growth factor signaling (9). Thus, it is not surprising that the generation of a well-defined matrix capable of facilitating hESC and hiPSC self-renewal has remained difficult (10). Previous proteomic investigations of Matrigel™ and other matrices supportive of hESC maintenance in vitro have revealed the presence of numerous growth, binding, and signaling proteins (11, 12). Further examination of how hESCs and hiPSCs interact with these complex matrices would provide critical information about what role the ECM plays in the organization of processes involved in the regulation of self-renewal and pluripotency.A recent study has established the ability of hESC-derived matrix microenvironments to alter tumorigenic properties through the reprogramming of metastatic melanoma cells (13). Importantly, this effect was found to be dependent on the exposure of metastatic cells to hESC-derived conditioned Matrigel™. Culture of metastatic melanoma cells in hESC-conditioned medium did not promote the reprogramming effect. These data suggest that the proteins responsible for this effect were integrated in the matrix. With the use of immunochemical techniques, it was later found that the left-right determination (Lefty) proteins A and B that were deposited in the matrix by hESCs during conditioning were at least in part responsible for the cellular change observed in metastatic cells (14). The Lefty A and B proteins are antagonists of transforming growth factor (TGF)-β signaling that act directly on Nodal protein, a critical regulator of the stem cell phenotype (15, 16). Subsequent studies of conditioned matrix utilizing mESCs implicated the bone morphogenic protein (BMP) 4 antagonist Gremlin as a primary regulator of the observed changes in metastatic cells (17). Collectively, these studies were all biased by a targeted analysis of potential effectors of metastatic cells. A comprehensive proteomic analysis of conditioned matrix could potentially reveal other factors involved in metastatic cell reprogramming. Furthermore, proteomic examination of hESC and hiPSC conditioned matrix could expose factors important in the regulation of self-renewal and pluripotency by the microenvironment in vitro.To this end, we have analyzed both types of human pluripotent stem cells, hESCs and hiPSCs, via a mass spectrometry (MS)-based proteomics approach to identify proteins deposited during growth in feeder-free conditions in vitro on Matrigel™. To investigate the hESC- and hiPSC-derived matrix, the metabolic labeling technique known as stable isotope labeling with amino acids in cell culture (SILAC) was used (18). SILAC facilitates the identification of hESC- and hiPSC-derived proteins that would otherwise be confounded by the presence of mouse-derived protein background from Matrigel™. From the proteomic analysis of three cells lines, namely, the hESC lines H9 and CA1 and the hiPSC line BJ-1D, we identified a total of 621, 1355, and 1350 total unique proteins, respectively. This work represents the first analysis of a hESC- and hiPSC-derived conditioned matrix and resulted in the identification of at least one novel microenvironmental contributor responsible for the regulation of human pluripotent stem cells.  相似文献   
124.

Background

Bone marrow stromal cell antigen 2 (BST-2) is a cellular factor that restricts the egress of viruses such as human immunodeficiency virus (HIV-1) from the surface of infected cells, preventing infection of new cells. BST-2 is variably expressed in most cell types, and its expression is enhanced by cytokines such as type I interferon alpha (IFN-??). In this present study, we used the beta-retrovirus, mouse mammary tumor virus (MMTV) as a model to examine the role of mouse BST-2 in host infection in vivo.

Results

By using RNA interference, we show that loss of BST-2 enhances MMTV replication in cultured mammary tumor cells and in vivo. In cultured cells, BST-2 inhibits virus accumulation in the culture medium, and co-localizes at the cell surface with virus structural proteins. Furthermore, both scanning electron micrograph (SEM) and transmission electron micrograph (TEM) show that MMTV accumulates on the surface of IFN??-stimulated cells.

Conclusions

Our data provide evidence that BST-2 restricts MMTV release from naturally infected cells and that BST-2 is an antiviral factor in vivo.  相似文献   
125.
126.
Plant cells are characterized by the presence of chloroplasts, membrane lipids of which contain up to ~80% mono- and digalactosyldiacylglycerol (MGDG and DGDG). The synthesis of MGDG in the chloroplast envelope is essential for the biogenesis and function of photosynthetic membranes, is coordinated with lipid metabolism in other cell compartments and is regulated in response to environmental factors. Phenotypic analyses of Arabidopsis using the recently developed specific inhibitor called galvestine-1 complete previous analyses performed using various approaches, from enzymology, cell biology to genetics. This review details how this probe could be beneficial to study the lipid homeostasis system at the whole cell level and highlights connections between MGDG synthesis and Arabidopsis flower development.  相似文献   
127.
Accumulation of misfolded secretory proteins in the endoplasmic reticulum (ER) activates the unfolded protein response (UPR) stress pathway. To enhance secretory protein folding and promote adaptation to stress, the UPR upregulates ER chaperone levels, including BiP. Here we describe chromosomal tagging of KAR2, the yeast homologue of BiP, with superfolder green fluorescent protein (sfGFP) to create a multifunctional endogenous reporter of the ER folding environment. Changes in Kar2p-sfGFP fluorescence levels directly correlate with UPR activity and represent a robust reporter for high-throughput analysis. A novel second feature of this reporter is that photobleaching microscopy (fluorescence recovery after photobleaching) of Kar2p-sfGFP mobility reports on the levels of unfolded secretory proteins in individual cells, independent of UPR status. Kar2p-sfGFP mobility decreases upon treatment with tunicamycin or dithiothreitol, consistent with increased levels of unfolded proteins and the incorporation of Kar2p-sfGFP into slower-diffusing complexes. During adaptation, we observe a significant lag between down-regulation of the UPR and resolution of the unfolded protein burden. Finally, we find that Kar2p-sfGFP mobility significantly increases upon inositol withdrawal, which also activates the UPR, apparently independent of unfolded protein levels. Thus Kar2p mobility represents a powerful new tool capable of distinguishing between the different mechanisms leading to UPR activation in living cells.  相似文献   
128.
Lupus nephritis is a major contributor to morbidity and mortality in systemic lupus erythematosus, but little is known about the pathogenic processes that underlie the progressive decay in renal function. A common finding in lupus nephritis is thickening of glomerular basement membranes associated with immune complex deposition. It has been speculated that alterations in the synthesis or degradation of membrane components might contribute to such changes, and thereby to initiation and progression of nephritis through facilitation of immune complex deposition. Matrix metalloproteinases (MMPs) are enzymes that are intimately involved in the turnover of major glomerular basement membrane constituents, including collagen IV and laminins. Alterations in the expression and activity of MMPs have been described in a number of renal diseases, suggesting their relevance to the pathogenesis of various glomerulopathies. The same is true for their natural inhibitors, the tissue inhibitor of metalloproteinase family. Recent data from our group have identified an increase in proteolytic activity within the glomerulus coinciding with the development of proteinuria in the mouse model of systemic lupus erythematosus. (NXB × NZW)F1 Here we review current understanding of MMP/tissue inhibitor of metalloproteinase function within the kidney, and discuss their possible involvement in the development and progression of lupus nephritis.  相似文献   
129.
130.
赤红壤早稻田甲烷排放通量及其影响因素   总被引:5,自引:0,他引:5  
用封闭箱法对广东省赤红壤早稻田CH4排放通量进行了观测。结果表明,CH4排放有明显的季节变化规律,3个排放高峰分别出现在水稻分蘖末期、孕穗抽穗期和乳熟期,平均通量为5.7mg.m-2.h-1。在测定期内,CH4排放与5和10cm土壤温度呈显著正相关,与土壤Eh呈显著负相关,与土壤pH值、水层深浅相关不明显。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号