首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   117篇
  免费   0篇
  2019年   1篇
  2014年   1篇
  2013年   8篇
  2012年   3篇
  2011年   7篇
  2010年   11篇
  2009年   15篇
  2008年   6篇
  2007年   12篇
  2006年   3篇
  2005年   8篇
  2004年   5篇
  2003年   3篇
  2002年   2篇
  2000年   3篇
  1999年   4篇
  1998年   1篇
  1997年   4篇
  1996年   5篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1950年   1篇
排序方式: 共有117条查询结果,搜索用时 46 毫秒
71.
We used morphological and geographical data of 128 herbarium specimens of the Taxus wallichiana complex in eastern Asia to investigate their utilization in discriminating and identifying taxa included in the complex. One bud scale and 26 leaf characters were used to separate T. fuana , T. wallichiana var. wallichiana , T. wallichiana var. mairei , T. wallichiana var. chinensis and T. sumatrana by K-means clustering and dendrograms using Ward's distance. Out of the 27 characters examined 21 were found to be well correlated with geographical patterns. T. fuana was morphologically the most distant taxon, while T. sumatrana clustered among the T. wallichiana varieties. After correcting misidentifications of the specimens in T. wallichiana , its varieties occupied discrete geographical ranges, except for some limited sympatry of varieties mairei and chinensis east of the Tanaka–Kaiyong line and the Sichuan Basin, China. Our analysis demonstrates the importance of consistency in character selection and definition in the identification of morphologically difficult taxa and the power of combining morphometric and geographical data in clarifying their spatial distribution.  © 2007 The Linnean Society of London, Botanical Journal of the Linnean Society , 2007, 155 , 307–335.  相似文献   
72.
Mycorrhizal fungi can contribute to soil carbon sequestration by immobilizing carbon in living fungal tissues and by producing recalcitrant compounds that remain in the soil following fungal senescence. We hypothesized that nitrogen (N) fertilization would decrease these carbon stocks, because plants should reduce investment of carbon in mycorrhizal fungi when N availability is high. We measured the abundance of two major groups of mycorrhizal fungi, arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi, in the top 10 cm of soil in control and N-fertilized plots within three Alaskan boreal ecosystems that represented different recovery stages following severe fire. Pools of mycorrhizal carbon included root-associated AM and ECM structures; soil-associated AM hyphae; and glomalin, a glycoprotein produced by AM fungi. Total mycorrhizal carbon pools decreased by approximately 50 g C m−2 in the youngest site under N fertilization, and this reduction was driven mostly by glomalin. Total mycorrhizal carbon did not change significantly in the other sites. Root-associated AM structures were more abundant under N fertilization across all sites, and root-associated ECM structures increased marginally significantly. We found no significant N effects on AM hyphae. Carbon sequestered within living mycorrhizal structures (0.051–0.21 g m−2) was modest compared with that of glomalin (33–203 g m−2). We conclude that our hypothesis was only supported in relation to glomalin stocks within one of the three study sites. As N effects on glomalin were inconsistent among sites, an understanding of the mechanisms underlying this variation would improve our ability to predict ecosystem feedbacks to global change.  相似文献   
73.
Cave animals have historically attracted the attention of evolutionary biologists because of their bizarre ‘regressive’ characters and convergent evolution. However, understanding of their biogeographic and evolutionary history, including mechanisms of speciation, has remained elusive. In the last decade, molecular data have been obtained for subterranean taxa and their surface relatives, which have allowed some of the classical debates on the evolution of cave fauna to be revisited. Here, we review some of the major studies, focusing on the contribution of phylogeography in the following areas: biogeographic history and the relative roles of dispersal and vicariance, colonization history, cryptic species diversity and modes of speciation of cave animals. We further consider the limitations of current research and prospects for the future. Phylogeographic studies have confirmed that cave species are often cryptic, with highly restricted distributions, but have also shown that their divergence and potential speciation may occur despite the presence of gene flow from surface populations. Significantly, phylogeographic studies have provided evidence for speciation and adaptive evolution within the confines of cave environments, questioning the assumption that cave species evolved directly from surface ancestors. Recent technical developments involving ‘next generation’ DNA sequencing and theoretical developments in coalescent and population modelling are likely to revolutionize the field further, particularly in the study of speciation and the genetic basis of adaptation and convergent evolution within subterranean habitats. In summary, phylogeographic studies have provided an unprecedented insight into the evolution of these unique fauna, and the future of the field should be inspiring and data rich.  相似文献   
74.
The ability of 16 calcareous grassland species to establish in competition with adult neighbours of two different growth forms was assessed in a glasshouse experiment. The questions asked were: (1) how well is establishment ability related to plant traits such as seed mass, DNA content, relative growth rate and adult height; and (2) are the results consistent across different neighbours? Two measures of establishment ability were calculated, survival relative yield and biomass relative yield, for seedlings grown with a dicot. ( Leontodon hispidus ) and with a graminoid ( Festuca ovina ). The results depended on which measure of establishment ability was used. When establishment ability was measured in terms of biomass relative yield, seed mass was a good predictive trait, accounting for 38–55% of variation. However, when establishment ability was measured as survival relative yield, adult height was found to be the best predictor, capable of accounting for 20% of variation, although this was not consistent across neighbours. Thus, no clear relationship between plant traits and establishment ability was found: results depended on the measure of establishment ability used, and in the case of adult height, on the identity of the neighbour species. Survival relative yield was strongly associated with target and neighbour species growth form type, with stronger suppression of like than of non-like growth forms. The lack of strong relationships between plant traits and establishment ability, and the dependence on neighbour identity, suggests that the links between plant traits and establishment might be context-dependent; thus an understanding of the mechanisms underlying any such links is essential.  相似文献   
75.
1. Analysis of the distribution and abundance of water plants can be a useful tool for determining the ecological water requirements of sites in a catchment. 2. Seed‐bank and vegetation surveys of wetland and riparian sites were undertaken in the Angas River catchment in South Australia to determine the distribution and abundance of plants associated with riparian habitats. Plant species were allocated to water plant functional groups (WPFGs sensu Brock and Casanova, Frontiers in Ecology; Building the Links, 1997, Elsevier Science). In addition to the seven functional groups already recognised, three new groups containing submerged and woody growth forms were included in this study. 3. Cluster analysis of sites on the basis of species presence/absence was compared with site clustering obtained from analysis of representation of WPFGs. Functional group analysis provided a similar segregation of species‐poor sites to that resulting from analysis of species presence/absence, but provided better resolution of clusters for species‐rich sites. Three clusters of species‐rich sites were delineated: riparian sites that require year‐round permanent water but have fluctuating water levels, spatially and temporally variable riparian sites with shrubs and trees and temporary wetlands that dry annually. 4. Segregation of sites on the basis of functional group representation can provide information to managers about the water requirements of suites of species in different parts of the catchment. Knowledge of the environmental water requirements of sites within a catchment can help managers to prioritise water management options and delivery within that catchment.  相似文献   
76.
Some of the morphological characters used in Porifera taxonomy have often been shown to be inconsistent. In the present study, we tested the phylogenetic coherence of currently used taxonomic characters of the calcarean genus Clathrina. For this, 20 species of Clathrina and three other calcinean genera (Ascandra, Guancha, and Leucetta) were sequenced for the ITS and D2 region of the 28S ribosomal DNA. Maximum‐likelihood and maximum‐parsimony algorithms were used to reconstruct phylogenetic trees. Deep divergences were observed in our tree and Clathrina was shown to be paraphyletic. The major split in our topology showed a clear‐cut distinction between sponges with and without tetractine spicules. Moreover, a group of yellow‐coloured Clathrina was clearly separated from the remaining white‐coloured species. Our results show that the presence of diactines, water‐collecting tubes, the degree of cormus anastomosis, and actine shapes do not correlate with the major clades of the calcinean phylogeny. On the other hand, the presence of tripods, the absence of tetractines, and the presence of spines in the apical actine of tetractines seem to be good synapomorphies for clades in our tree. Our results demonstrate that skeleton characters can be reliably used in higher level taxonomy in Clathrinida. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 163 , 1026–1034.  相似文献   
77.
Sexual dimorphism of phenotypic traits associated with resource use is common in animals, and may result from niche divergence between sexes. Snakes have become widely used in studies of the ecological basis of sexual dimorphism because they are gape‐limited predators and their head morphology is likely to be a direct indicator of the size and shape of prey consumed. We examined sexual dimorphism of body size and head morphology, as well as sexual differences in diet, in a population of Mexican lance‐headed rattlesnakes, Crotalus polystictus, from the State of México, Mexico. The maximum snout–vent length of males was greater than that of females by 21%. Males had relatively larger heads, and differed from females in head shape after removing the effects of head size. In addition, male rattlesnakes showed positive allometry in head shape: head width was amplified, whereas snout length was truncated with increased head size. By contrast, our data did not provide clear evidence of allometry in head shape of females. Adults of both males and females ate predominately mice and voles; however, males also consumed a greater proportion of larger mammalian species, and fewer small prey species. The differences in diet correspond with dimorphism in head morphology, and provide evidence of intersexual niche divergence in the study population. However, because the sexes overlapped greatly in diet, we hypothesize that diet and head dimorphisms in C. polystictus are likely related to different selection pressures in each sex arising from pre‐existing body size differences rather than from character displacement for reducing intersexual competition. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 633–640.  相似文献   
78.
We examined the influence of warming and supplemental precipitation on plant production and abundance of the dominant microarthropod, the springtail Cryptopygus antarcticus (Collembola), in tundra dominated by the vascular plants Colobanthus quitensis and Deschampsia antarctica along the Antarctic Peninsula. Tundra cores were placed in plots near Palmer Station where they were warmed with infrared heaters in combination with receiving supplemental precipitation. Diel canopy air and soil temperatures and air vapor pressure deficits in warmed plots were elevated 0.8 °C, 2.2 °C and 0.13 kPa, respectively. After two growing seasons, total aboveground plant production was greater under warming as a result of enhanced production by C. quitensis, which more than offset declines in moss biomass. Total aboveground plant production was also greater under supplemental precipitation primarily as a result of enhanced moss production. Total aboveground plant production was greatest under the combination of warming and supplemental precipitation, primarily as a result of enhanced C. quitensis production. C. antarcticus were more abundant in cores receiving supplemental precipitation and there was a strong treatment interaction; these springtails were most abundant in warmed cores receiving supplemental precipitation. Over 50% of the variability in the abundance of C. antarcticus could be explained by differences in aboveground plant biomass. However, plant production did not appear directly responsible for differences in C. antarcticus abundance; when we examined C. antarcticus abundance per unit of aboveground plant biomass, differences in its abundance among treatments were still apparent implying these differences were not the direct result of plant biomass. The responses of C. antarcticus were consistent with its known moisture and thermal preferences, suggesting that abiotic factors played a dominant role in controlling its abundance. Precipitation regime had large impacts on warming responses and these were species specific, illustrating the importance of future precipitation regimes in predicting system responses to warming.  相似文献   
79.
Summary 1. Fish excretion can be an important source of nutrients in aquatic ecosystems. Nitrogen (N) and phosphorus (P) excretion rates are influenced by many factors, including fish diet, fish growth rate and fish size. However, the relative influence of these and other factors on community‐level excretion rates of fish is unknown. 2. We used bioenergetics modeling to estimate excretion rates of eight fish species in a shallow, Minnesota (U.S.A.) lake over four months in both 2004 and 2005. Excretion rates of each species were summed for community‐level N and P excretion rates, as well as the N : P ratio of excretion. We then used a model‐selection approach to assess ability of independent variables to predict excretion rates, and to identify the most parsimonious model for predicting N : P excretion ratios and P and N excretion rates at the community scale. Predictive models were comprised of the independent variables water temperature and average fish density, fish size, fish growth rate, nutrient content of fish and nutrient content of fish diets at the community scale. 3. Fish density and nutrient content of fish diets (either N or P) were the most parsimonious models for predicting both N and P excretion rates, and explained 96% and 92% of the variance in N and P excretion, respectively. Moreover, fish density and nutrient models had 1400‐fold more support for predicting N and 21‐fold more support for predicting P excretion relative to models based on fish density only. Water temperature, fish size, fish growth rates and nutrient content of fish showed little influence on excretion rates, and none of our independent variables showed a strong relationship with N : P ratios of excretion. 4. Past work has focused on the importance of fish density as a driver of fish excretion rates on a volumetric basis. However, our results indicate that volumetric excretion rates at the community scale will also change substantially in response to changes in relative abundance of fish prey or shifts in relative dominance of planktivores, benthivores, or piscivores. Changes in community‐scale excretion rates will have subsequent influences on algal abundance, water clarity, and other ecosystem characteristics.  相似文献   
80.
One of the major concerns about global warming is the potential for an increase in decomposition and soil respiration rates, increasing CO2 emissions and creating a positive feedback between global warming and soil respiration. This is particularly important in ecosystems with large belowground biomass, such as grasslands where over 90% of the carbon is allocated belowground. A better understanding of the relative influence of climate and litter quality on litter decomposition is needed to predict these changes accurately in grasslands. The Long‐Term Intersite Decomposition Experiment Team (LIDET) dataset was used to evaluate the influence of climatic variables (temperature, precipitation, actual evapotranspiration, and climate decomposition index), and litter quality (lignin content, carbon : nitrogen, and lignin : nitrogen ratios) on leaf and root decomposition in the US Great Plains. Wooden dowels were used to provide a homogeneous litter quality to evaluate the relative importance of above and belowground environments on decomposition. Contrary to expectations, temperature did not explain variation in root and leaf decomposition, whereas precipitation partially explained variation in root decomposition. Percent lignin was the best predictor of leaf and root decomposition. It also explained most variation in root decomposition in models which combined litter quality and climatic variables. Despite the lack of relationship between temperature and root decomposition, temperature could indirectly affect root decomposition through decreased litter quality and increased water deficits. These results suggest that carbon flux from root decomposition in grasslands would increase, as result of increasing temperature, only if precipitation is not limiting. However, where precipitation is limiting, increased temperature would decrease root decomposition, thus likely increasing carbon storage in grasslands. Under homogeneous litter quality, belowground decomposition was faster than aboveground and was best predicted by mean annual precipitation, which also suggests that the high moisture in soil accelerates decomposition belowground.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号