首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116篇
  免费   0篇
  2019年   1篇
  2014年   1篇
  2013年   8篇
  2012年   3篇
  2011年   7篇
  2010年   10篇
  2009年   15篇
  2008年   6篇
  2007年   12篇
  2006年   3篇
  2005年   8篇
  2004年   5篇
  2003年   3篇
  2002年   2篇
  2000年   3篇
  1999年   4篇
  1998年   1篇
  1997年   4篇
  1996年   5篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1950年   1篇
排序方式: 共有116条查询结果,搜索用时 421 毫秒
41.
42.
Trichoplusia ni is a subtropical moth that migrates annually from southern California to southern British Columbia, Canada where it invades vegetable greenhouses and field crops. The heated greenhouse environment has altered the natural extinction–recolonization dynamics of T. ni populations, and allows year‐round persistence in some locations. In addition, the extensive use of the biopesticide, Bacillus thuringiensis subspecies kurstaki (Bt) in some greenhouses has selected for resistance. Here we investigated the genetic structure of T. ni populations in British Columbia greenhouses and in field populations in California and British Columbia using amplified fragment length polymorphisms (AFLP) as related to patterns of Bt resistance. The majority of British Columbia field populations were similar to the California field populations, the potential source of migrants. However populations in two geographic areas with high concentrations of greenhouses showed local genetic differentiation. Some of these populations experienced severe bottlenecks over‐winter and following Bt sprays. Greenhouse populations showed a pattern of isolation by distance and a strong positive relationship between genetic differentiation and levels of Bt resistance. These patterns indicate that greenhouses that sometimes support year‐round populations of T. ni and the ensuing strong bottlenecking effects following winter cleanups and Bt application cause genetic differentiation of T. ni populations. Long distance migrants to field populations contribute to genetic homogeneity of these.  相似文献   
43.
44.
Cross‐ecosystem transfers of resources could alter the life history traits of consumers in adjacent systems by changing the nature and availability of prey. However, large‐scale influences, such as natural disturbances, that control the magnitude of prey subsidies are likely to modify these effects. To investigate impacts of cross‐ecosystem subsidies on the life history traits of a riparian predator we measured the size, sex and condition of riparian fishing spiders (Dolomedes aquaticus) across a gradient of flooding frequency and intensity. These spiders rely on adult aquatic insects for a large proportion of their diet and previous research demonstrated that increased flooding decreased the abundance of aquatic insect prey. In this study, laboratory experiments indicated that increased prey availability hastened the first moult of the spiders after winter and decreased the propensity for cannibalistic interactions of individuals of the same size. However, despite the likely positive influences of increased food supply, in the field the highest abundance and proportion of large, potentially reproductive females occurred at the most flood‐prone rivers, where aquatic prey availability was the lowest. It is likely that other factors modified by the disturbance regime, such as habitat availability, flood‐related mortality and intra‐specific interaction rates, altered the influence of cross‐ecosystem subsidies on the life history traits of these spiders. Thus, our results indicate that disturbance‐related effects can flow across ecosystem boundaries and alter the life history traits of predators relying on allochthonous resources.  相似文献   
45.
46.
A common hypothesis for northern ecosystems is that low soil temperatures inhibit plant productivity. To address this hypothesis, we reviewed how separate components of ecosystem carbon (C) cycling varied along a soil temperature gradient for nine well-drained, relatively productive boreal black spruce ( Picea mariana Mill. [B.S.P.]) forests in Alaska, USA, and Saskatchewan and Manitoba, Canada. Annual soil temperature [expressed as soil summed degree days (SDD)] was positively correlated with aboveground net primary productivity (ANPP), while negatively correlated with total belowground carbon flux (TBCF). The partitioning of C to ANPP at the expense of root processes represented a nearly 1 : 1 tradeoff across the soil temperature gradient, which implied that the amount of C cycling through these black spruce ecosystems was relatively insensitive to variation in SDD. Moreover, the rate at which C accumulated in the ecosystem since the last stand replacing fire was unrelated to SDD, but SDD was positively correlated to the ratio of spruce-biomass : forest-floor-mass. Thus, plant partitioning of C and the distribution of ecosystem C were apparently affected by soil temperature, although across regions, precipitation co-varied with soil temperature. These two factors likely correlated with one another because of precipitation's influence on soil heat balance, suggesting that a soil temperature–precipitation interaction could be responsible for the shifts in C allocation. Nonetheless, our results highlight that for this boreal ecosystem, ANPP and TBCF can be negatively correlated. In tropical and temperate forests, TBCF and ANPP have been reported as positively correlated, and our results may reflect the unique interactions between soil temperature, forest floor accumulation, rooting depth, and nutrient availability that characterize the black spruce forest type.  相似文献   
47.
ABSTRACT Downing population reconstruction uses harvest-by-age data and backward addition of cohorts to estimate minimum population size over time. Although this technique is currently being used for management of black bear (Ursus americanus) and white-tailed deer (Odocoileus virginianus) populations, it had not undergone a rigorous evaluation of accuracy. We used computer simulations to evaluate the impacts of collapsing age classes and violating the assumptions of this technique on population reconstruction estimates and trends. Changes in harvest rate or survival over time affected accuracy of reconstructed population estimates and trends. The technique was quite robust to collapsing age classes as far as 3+ for bears and deer. This method would be suitable for estimating population growth rate (λ) for populations experiencing no trend in harvest rate or natural mortality rate over time. Our evaluation showed Downing population reconstruction to be a potentially valuable tool for managing harvested species with high harvest rates and low natural mortality, with possible application to black bear and white-tailed deer populations.  相似文献   
48.
ABSTRACT The accidental introduction of the brown treesnake (BTS; Boiga irregularis) to the island of Guam after World War II set off a chain of bird, bat, and lizard extirpations. Fortunately, many of the eliminated species have the potential to be restored following population reduction or eradication of the snake. The primary operational tool for population reduction is an effective snake trap, but areas subjected to long-term trapping continue to support BTS, suggesting that some adult snakes are refractory to trapping. We closed a 5-ha area to BTS emigration and immigration and surveyed the population using trapping and visual surveys to determine whether a refractory stratum of adult snakes existed and if trapping was effective for snakes of all sizes. Our surveys included 101 trapping occasions and 109 visual surveys over 309 days, resulting in 2,522 detections of 122 individuals. We detected 44 of 45 supplemented snakes by this intensive sampling effort, which also revealed that trapping was fully effective for snakes >900 mm in snout—vent length (SVL), partially effective for snakes 700–900 mm SVL, and totally ineffective for smaller juveniles (350–700 mm SVL). Visual searching was effective for snakes of all sizes. As BTS mature at approximately 950-1, 050 mm SVL, continuous trapping should suffice to eliminate recruitment in the absence of immigration. Immigration or inadequate effort is most likely responsible for the persistence of BTS in areas subject to long-term trapping. Thus, current efforts to capture trap-refractory adult snakes with alternate control tools are less likely to be successful than immigration barriers alone or in combination with elevated capture effort.  相似文献   
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号