We performed a hospital-based, unmatched case-control study to investigate the association between progressive stages of cervical neoplasia and digital analysis of cell proliferation by silver stained nucleolus organizer region associated proteins (AgNORs). We measured cell proliferation levels in the cervical epithelial cells of 10 women with low grade squamous intraepithelial lesions (LG-SIL), eight with high grade squamous intraepithelial lesions (HG-SIL), 11 with cervical cancer (CC) and eight with no cervical lesions (controls) using the AgNORs technique. Cell proliferation was measured by digital image analysis (DIA). DIA revealed increased total areas of AgNORs in HG-SIL and CC compared to LG-SIL and control patients. AgNORs with a kidney or cluster shape exhibited greater areas than those with a spherical or long shape. We propose a cut-off of 118 pixels to differentiate benign (control and LG-SIL) from malignant (HG-SIL and CC) lesions. DIA of AgNORs is a simple and inexpensive method for studying proliferation. The increased total area of AgNORs in malignant lesions provides information regarding cell behavior and may be related to cervical carcinogenesis; however, further validation studies are required to establish its usefulness in cytological analysis. 相似文献
ABSTRACT. Horizontal gene transfer (HGT) and common descent interact in space and time. Because events of HGT co‐occur with phylogenetic evolution, it is difficult to depict evolutionary patterns graphically. Tree‐like representations of life's diversification are useful, but they ignore the significance of HGT in evolutionary history, particularly of unicellular organisms, ancestors of multicellular life. Here we integrate the reticulated‐tree model, ring of life, symbiogenesis whole‐organism model, and eliminative pattern pluralism to represent evolution. Using Entamoeba histolytica alcohol dehydrogenase 2 (EhADH2), a bifunctional enzyme in the glycolytic pathway of amoeba, we illustrate how EhADH2 could be the product of both horizontally acquired features from ancestral prokaryotes (i.e. aldehyde dehydrogenase [ALDH] and alcohol dehydrogenase [ADH]), and subsequent functional integration of these enzymes into EhADH2, which is now inherited by amoeba via common descent. Natural selection has driven the evolution of EhADH2 active sites, which require specific amino acids (cysteine 252 in the ALDH domain; histidine 754 in the ADH domain), iron‐ and NAD+ as cofactors, and the substrates acetyl‐CoA for ALDH and acetaldehyde for ADH. Alternative views invoking “common design” (i.e. the non‐naturalistic emergence of major taxa independent from ancestry) to explain the interaction between horizontal and vertical evolution are unfounded. 相似文献