首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   218篇
  免费   12篇
  2023年   2篇
  2022年   9篇
  2021年   7篇
  2020年   3篇
  2019年   2篇
  2018年   3篇
  2017年   5篇
  2016年   6篇
  2015年   15篇
  2014年   11篇
  2013年   16篇
  2012年   21篇
  2011年   20篇
  2010年   10篇
  2009年   8篇
  2008年   9篇
  2007年   5篇
  2006年   7篇
  2005年   7篇
  2004年   4篇
  2003年   5篇
  2002年   7篇
  2001年   8篇
  2000年   4篇
  1999年   4篇
  1998年   6篇
  1997年   2篇
  1995年   3篇
  1994年   4篇
  1993年   2篇
  1992年   1篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
排序方式: 共有230条查询结果,搜索用时 15 毫秒
51.
Silver is a non-essential, toxic metal. The use of silver as an antimicrobial agent in many applications and its presence as a contaminant in foods and air can lead to accumulation in tissues. Despite its widespread use, the systems involved in the uptake of silver into mammalian cells are presently unknown. Previous studies have shown that copper uptake at the plasma membrane by copper transporter 1 (Ctr1) is inhibited by an excess of silver, suggesting that Ctr1 may function in importing silver into cells. In this study we examined directly the role of Ctr1 in the accumulation of silver in mammalian cells using over-expression experiments and mouse embryonic fibroblast cells lacking Ctr1. COS-7 cells transfected to express a human Ctr1-green fluorescent protein (hCtr1-GFP) fusion protein hyper-accumulated silver when incubated in medium supplemented with low micromolar concentrations (2.5–10 μmol/L) of AgNO3. An hCtr1-GFPM150L,M154L variant deficient for copper transport failed to stimulate accumulation of silver. Mouse embryonic fibroblast cells lacking Ctr1 showed approximately a 50% reduction in silver content when incubated in silver-supplemented medium compared to a wild-type isogenic cell line. Collectively, these data demonstrate that Ctr1 transports both copper and silver and suggest that Ctr1 is an important transport protein in the accumulation of silver in mammalian cells.  相似文献   
52.
Genetic manipulation of human cells through delivery of a functional gene or a gene-silencing element is an attractive approach to treat critical diseases very precisely and effectively. Extensive research on the genetic basis of human diseases with complete sequencing of human genome has revealed many vital genes as possible targets in gene therapy programs. On the other hand, to facilitate cell- or tissue-directed delivery of genes and gene-silencing nucleic acid sequences, both genetic and chemical engineering approaches have led to the generation of various viral and nonviral carriers. However, considering the issues of both safety and efficacy, none of the existing vectors is an ideal candidate for clinical use. We recently established pH-sensitive inorganic nanocrystals of carbonate apatite with capability of efficient intracellular delivery and release of associated DNA molecules for subsequent protein expression. Here we show a new synthetic approach for carbonate apatite crystals with stronger affinity toward DNA, leading to significant increment in both transgene delivery and expression. Moreover, CaCl2 and NaCl, existing as the major electrolytes in the bicarbonate-buffered solution, dose-dependently govern particle size and eventually internalization and expression of particle-associated DNA.  相似文献   
53.
Intestinal Cl secretion is stimulated by cyclic AMP (cAMP) and intracellular calcium ([Ca2+]i). Recent studies show that protein kinase A (PKA) and the exchange protein directly activated by cAMP (Epac) are downstream targets of cAMP. Therefore, we tested whether both PKA and Epac are involved in forskolin (FSK)/cAMP-stimulated Cl secretion. Human intestinal T84 cells and mouse small intestine were used for short circuit current (Isc) measurement in response to agonist-stimulated Cl secretion. FSK-stimulated Cl secretion was completely inhibited by the additive effects of the PKA inhibitor, H89 (1 µM), and the [Ca2+]i chelator, 1,2-bis-(o-aminophenoxy)-ethane-N,N,N’,N’-tetraacetic acid, tetraacetoxymethyl ester (BAPTA-AM; 25 µM). Both FSK and the Epac activator 8-pCPT-2’-O-Me-cAMP (50 µM) elevated [Ca2+]i, activated Ras-related protein 2, and induced Cl secretion in intact or basolateral membrane–permeabilized T84 cells and mouse ileal sheets. The effects of 8-pCPT-2’-O-Me-cAMP were completely abolished by BAPTA-AM, but not by H89. In contrast, T84 cells with silenced Epac1 had a reduced Isc response to FSK, and this response was completely inhibited by H89, but not by the phospholipase C inhibitor U73122 or BAPTA-AM. The stimulatory effect of 8-pCPT-2’-O-Me-cAMP on Cl secretion was not abolished by cystic fibrosis transmembrane conductance (CFTR) inhibitor 172 or glibenclamide, suggesting that CFTR channels are not involved. This was confirmed by lack of effect of 8-pCPT-2’-O-Me-cAMP on whole cell patch clamp recordings of CFTR currents in Chinese hamster ovary cells transiently expressing the human CFTR channel. Furthermore, biophysical characterization of the Epac1-dependent Cl conductance of T84 cells mounted in Ussing chambers suggested that this conductance was hyperpolarization activated, inwardly rectifying, and displayed a Cl>Br>I permeability sequence. These results led us to conclude that the Epac-Rap-PLC-[Ca2+]i signaling pathway is involved in cAMP-stimulated Cl secretion, which is carried by a novel, previously undescribed Cl channel.  相似文献   
54.
Some pesticides may interfere with the female hormonal function, which may lead to negative effects on the reproductive system through disruption of the hormonal balance necessary for proper functioning. Previous studies primarily focused on interference with the estrogen and/or androgen receptor, but the hormonal function may be disrupted in many more ways through pesticide exposure. The aim of this review is to give an overview of the various ways in which pesticides may disrupt the hormonal function of the female reproductive system and in particular the ovarian cycle. Disruption can occur in all stages of hormonal regulation: 1. hormone synthesis; 2. hormone release and storage; 3. hormone transport and clearance; 4. hormone receptor recognition and binding; 5. hormone postreceptor activation; 6. the thyroid function; and 7. the central nervous system. These mechanisms are described for effects of pesticide exposure in vitro and on experimental animals in vivo. For the latter, potential effects of endocrine disrupting pesticides on the female reproductive system, i.e. modulation of hormone concentrations, ovarian cycle irregularities, and impaired fertility, are also reviewed. In epidemiological studies, exposure to pesticides has been associated with menstrual cycle disturbances, reduced fertility, prolonged time-to-pregnancy, spontaneous abortion, stillbirths, and developmental defects, which may or may not be due to disruption of the female hormonal function. Because pesticides comprise a large number of distinct substances with dissimilar structures and diverse toxicity, it is most likely that several of the above-mentioned mechanisms are involved in the pathophysiological pathways explaining the role of pesticide exposure in ovarian cycle disturbances, ultimately leading to fertility problems and other reproductive effects. In future research, information on the ways in which pesticides may disrupt the hormonal function as described in this review, can be used to generate specific hypotheses for studies on the effects of pesticides on the ovarian cycle, both in toxicological and epidemiological settings.  相似文献   
55.
56.
Nitric oxide and S-nitrosothiols modulate a variety of important physiological activities. In vascular cells, agents that release NO and donate nitrosonium cation (NO(+)), such as S-nitrosoglutathione, are potent inducers of the antioxidant protein heme oxygenase 1 (HO-1) (Foresti, R., Clark, J. E., Green, C. J., and Motterlini, R. (1997) J. Biol. Chem. 272, 18411-18417; Motterlini, R., Foresti, R., Bassi, R., Calabrese, V., Clark, J. E., and Green, C. J. (2000) J. Biol. Chem. 275, 13613-13620). Here, we report that Angeli's salt (AS) (0.25-2 mm), a compound that releases nitroxyl anion (NO(-)) at physiological pH, induces HO-1 mRNA and protein expression in a concentration- and time-dependent manner, resulting in increased heme oxygenase activity in rat H9c2 cells. A time course analysis revealed that NO(-)-mediated HO-1 expression is transient and gradually disappears within 24 h, in accordance with the short half-life of AS at 37 degrees C (t(12) = 2.3 min). Interestingly, multiple additions of AS at lower concentrations (50 or 100 microm) over a period of time still promoted a significant increase in heme oxygenase activity. Experiments performed using a NO scavenger and the NO electrode confirmed that NO(-), not NO, is the species involved in HO-1 induction by AS; however, the effect on heme oxygenase activity can be amplified by accelerating the rate of NO(-) oxidation. N-Acetylcysteine almost completely abolished AS-mediated induction of HO-1, whereas a glutathione synthesis inhibitor (buthionine sulfoximine) significantly decreased heme oxygenase activation by AS, indicating that sulfydryl groups are crucial targets in the regulation of HO-1 expression by NO(-). We conclude that NO(-), in analogy with other reactive nitrogen species, is a potent inducer of heme oxygenase activity and HO-1 protein expression. These findings indicate that heme oxygenase can act both as a sensor to and target of redox-based mechanisms involving NO and extend our knowledge on the biological function of HO-1 in response to nitrosative stress.  相似文献   
57.
Aquaporins are a family of water channels considered to play an important role in fluid transport across plasma membranes. Among the reported isoforms, relatively little is known about the functional role of aquaporin 8 (AQP8), and there are no cell lines known to express the AQP8 protein. We report here that the rat submandibular epithelial cell line, SMIE, expresses AQP8. Using RT-PCR, the presence of mRNA for AQP8 was demonstrated in these cells. Confocal immunofluorescence experiments revealed that the AQP8 protein is primarily present in the apical membranes of SMIE cells. When grown as a polarized monolayer on collagen coated polycarbonate filters, and exposed on their apical surface to different hyperosmotic (440, 540, or 640 mOsm) solutions, net fluid movement across SMIE cells was 8-25-fold that seen under isosmotic conditions. Similarly, when grown on coverslips and then exposed to a hypertonic solution, SMIE cells shrunk as a function of time. Together, these results suggest that SMIE cells endogenously express functional AQP8 water channels.  相似文献   
58.
Nucleotide sequences from two nuclear loci, alcohol dehydrogenase and internal transcribed spacer-1 of the nuclear ribosomal DNA repeats, and two mitochondrial genes, cytochrome oxidase I and cytochrome oxidase II, were determined from nine species in the Drosophila saltans species group. The partition homogeneity test and partitioned Bremer support were used to measure incongruence between phylogenetic hypotheses generated from individual partitions. Individual loci were generally congruent with each other and consistent with the previously proposed morphological hypothesis, although they differed in level of resolution. Since extreme conflict between partitions did not exist, the data were combined and analyzed simultaneously. The total evidence method gave a more resolved and highly supported phylogeny, as indicated by bootstrap proportions and decay indices, than did any of the individual analyses. The cordata and elliptica subgroups, considered to have diverged early in the history of the D. saltans group, were sister taxa to the remainder of the saltans group. The sturtevanti subgroup, represented by D. milleri and D. sturtevanti, occupies an intermediate position in this phylogeny. The saltans and parasaltans subgroups are sister clades and occupy the most recently derived portion of the phylogeny. As with previous morphological studies, phylogenetic relationships within the saltans subgroup were not satisfactorily resolved by the molecular data.   相似文献   
59.
Nucleotide sequence comparisons were used to investigate the evolution of P transposable elements and the possibility that horizontal transfer has played a role in their occurrence in natural populations of Drosophila and other Diptera. The phylogeny of P elements was examined using published sequences from eight dipteran taxa and a new, partial sequence from Scaptomyza elmoi. The results from a number of different analyses are highly consistent and reveal a P-element phylogeny that contradicts the phylogeny of the species. At least three instances of horizontal transfer are necessary to explain this incongruence, but other explanations cannot be ruled out at this time.   相似文献   
60.
Spirulina (Spirulina platensis), has numerous health benefits including antioxidant, immunomodulatory, and anti-inflammatory activities, works against heavy metal toxicity, and is often used as a food supplement in human, animals, birds and fishes. This study aimed to evaluate the protective ability of the dietary spirulina against the toxic effects of inorganic arsenic (iAs) on male reproductive parameters in rats. Seventy-two mature Long-Evans male rats, dividing into six groups (T0, T1, T2, T3, T4 and T5) (12 rats/group) were included in this study. The T3, T4 and T5 group rats were treated with three consecutive doses (1.0 g, 1.5 g and 2.0 g/kg feed) of spirulina in feed along with 3.0 mg NaAsO2/kg body weight (BW) in drinking water (DW) daily for 90 days. Each rat of group T1 received NaAsO2 (3.0 mg/kg BW) in DW, and those of T2 group were fed with spirulina (2.0 g/kg feed) daily for 90 days. The rats of group T0 served as the control with normal feed and water. Total arsenic (tAs) contents, reproductive parameters (testicular weight, sperm motility and morphology), and histological changes in the testicles were evaluated in these rats. Arsenic dosing significantly (p=0.003, Kruskal-Wallis test) increased the tAs contents in the testicles, decreased testes weight, sperm morphology and motility compared to the controls. The effect of arsenic dosing was also evidenced by the histological changes like decreased germinal layers in the seminiferous tubules of the treated rats. Moreover, dietary spirulina (2.0 g/kg feed) supplementation significantly (p=0.011, Kruskal-Wallis test) lowered tAs contents in testicles and increases testes weights, sperm motility and morphology. Therefore, spirulina can be used as an effective dietary supplement to ameliorate the adverse effects of arsenic induced reproductive toxicities. However, further study is required to elucidate the underlying molecular mechanisms of reduction of arsenic induced reproductive toxicity by spirulina.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号