首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   206篇
  免费   13篇
  国内免费   3篇
  2023年   1篇
  2022年   3篇
  2021年   6篇
  2020年   2篇
  2019年   5篇
  2018年   3篇
  2017年   5篇
  2016年   7篇
  2015年   12篇
  2014年   7篇
  2013年   9篇
  2012年   11篇
  2011年   15篇
  2010年   15篇
  2009年   14篇
  2008年   9篇
  2007年   14篇
  2006年   5篇
  2005年   7篇
  2004年   11篇
  2003年   6篇
  2002年   2篇
  2001年   6篇
  2000年   1篇
  1999年   3篇
  1998年   9篇
  1997年   7篇
  1996年   5篇
  1995年   4篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1988年   1篇
  1980年   2篇
  1979年   2篇
  1977年   2篇
  1968年   2篇
  1967年   1篇
  1965年   3篇
  1963年   1篇
  1961年   1篇
排序方式: 共有222条查询结果,搜索用时 232 毫秒
71.
Leptin and μ-calpain have been considered as two candidate genes for carcass performance and meat quality traits in the farm animals. The micromolar calcium-activated neutral protease (CAPN1) gene encodes μ-calpain that degrades myofibril proteins under the postmortem conditions which appears to be the primary enzyme in the postmortem tenderization process. Leptin is the hormone product of the obese (LEP) gene. The role of leptin as a lipostatic signal regulating whole-body energy metabolism makes it one of the best physiological markers of body weight, food intake, reproduction and immune system functions.Genomic DNA extracted from 100 healthy buffaloes was amplified using primers that were designed from the cattle CAPN1 and LEP gene sequences. The amplified fragments of CAPN1 obtained from all tested buffalo DNA at 670-bp were digested with FokI endonuclease. The result showed that all tested buffaloes are genotyped as CC for CAPN1. For LEP gene, the amplified fragments obtained from all tested buffalo DNA at 400-bp were digested with Sau3AI endonuclease. All buffalo animals investigated in the present study are genotyped as AA for LEP gene.  相似文献   
72.
PAKs are serine/threonine kinases that regulate cytoskeletal dynamics and cell migration. PAK1 is activated by binding to the small EF hand protein, CIB1, or to the Rho GTPases Rac1 or Cdc42. The role of PAK1 in angiogenesis was established based only on in vitro studies and its role in angiogenesis in vivo has never been examined. Here we tested the hypothesis that PAK1 is an essential regulator of ischemic neovascularization (arteriogenesis and angiogenesis) and wound healing using a global PAK1 knockout mouse. Neovascularization was assessed using unilateral hindlimb ischemia. We found that plantar perfusion, limb use and appearance were not significantly different between 6–8 week old PAK1−/− and PAK1+/+ mice throughout the 21-day period following hindlimb ischemia; however a slightly delayed healing was observed in 16 week old PAK1−/− mice. In addition, the wound healing rate, as assessed with an ear punch assay, was unchanged in PAK1−/− mice. Surprisingly, however, we observed a notable increase in PAK2 expression and phosphorylation in ischemic gastrocnemius tissue from PAK1−/− but not PAK1+/+ mice. Furthermore, we observed higher levels of activated ERK2, but not AKT, in ischemic and non-ischemic muscle of PAK1−/− mice upon hindlimb ischemic injury. A group I PAK inhibitor, IPA3, significantly inhibited endothelial cell sprouting from aortic rings in both PAK1−/− and PAK1+/+ mice, implying that PAK2 is a potential contributor to this process. Taken together, our data indicate that while PAK1 has the potential to contribute to neovascularization and wound healing, PAK2 may functionally compensate when PAK1 is deficient.  相似文献   
73.
74.
The monthly density of the sand fly, Phlebotomus Papatasi Scopoli (Diptera: Psychodidae), was monitored during 2009 at Burg El-Arab, a rural district located close to the Mediterranean coast of Egypt. The number of annual generations and the efficacy of microbial control by the entomopathogenic fungus, Metrahizium anisopliae (Metsch.) Sorok (Ma79), were determined in the laboratory under atmospheric conditions, simulating those of the animal shelters in the study area. We used two collecting techniques; CDC light traps and oiled paper traps, to quantify sand fly density inside houses and in the open field. Adult flies exhibited a seasonal range from April to December. The seasonal pattern was bimodal, with one peak in July and the second one in October. Calculations of the correlation coefficient (r) revealed a significant role of temperature and relative humidity in the monthly abundance of the sand flies in the study area. P. papatasi colony completed seven annual generations under semifield conditions, but the mean developmental time of each immature stage and the mean total duration of development from egg to adult for each generation varied according to the prevailing temperature. The longest generation time was observed in winter (the mean ± SD was 118 ± 11.70 d), and the shortest one occurred at the highest temperatures in summer (the mean ± SD was 25.21 ± 2.04 d). In microbial control studies, the entomopathogenic fungus, M. anisopliae, was used at 15 × 10(8) spores/g food as a standard dose against the second-instar larvae of P. papatasi at the different seasons during 2009. Mortality reached 100% in winter and decreased to 56.0% as the prevailing temperature increased during the summer season.  相似文献   
75.
76.
Heterobifunctional poly(ethylene glycol)s can be used for many biomedical applications ranging from solubility enhancement of hardly soluble compounds to surface modification of medical devices. In order to modify gold nanoparticles as model particles for drug targeting applications, PEG derivatives are synthesized that possess a high affinity for gold surfaces, namely a thioalkyl function, known to form stable monolayers on gold. Additionally a bisphosphonate function is introduced in the PEG molecule to allow targeting of hydroxyapatite rich tissues, like bone. Gold nanoparticles are modified using the synthesized bifunctional PEG and investigated for their stability in biological fluids and their ability to bind to hydroxyapatite granules in these fluids.  相似文献   
77.
78.
79.
Control of nematode parasites with reduced reliance on the use of anthelmintics was studied in 16 ewes with suckling twin lambs on contaminated pasture in Denmark. Ewes and lambs were treated with albendazole at turn-out 3 May. Ewes were removed from the groups on 26 July, and lambs were slaughtered on 11 October. The animals were allocated to 4 groups of 8 lambs and their 4 ewes. Group TS was treated with albendazole at weeks 3, 6 and 8 after turnout and set-stocked; group TM was similarly treated but moved to clean pasture in conjunction with the last drenching; group US was untreated and set-stocked, and group UM was left untreated but moved to clean pasture week 8 after turn-out. Supplementary feed was offered in June and August due to scarcity of pasture. Strategic treatments of ewes and lambs weeks 3, 6 and 8 after turn-out, with or without a move to clean pasture, were highly effective in controlling nematode infections for most of the season. This was reflected in better weight gains and carcass characteristics in the treated compared to untreated lambs, resulting in an average increase in the value of the product by 36%. The effect of moving without treatment (UM) on faecal egg counts was limited but peak pasture infectivity was reduced to less than 10% compared to the set-stocked group and weight gains of lambs were significantly better despite poor feed availability in late season. The study showed that under set-stocked conditions repeated anthelmintic treatments of both ewes and lambs in early season may ensure sufficient nematode control whereas moving animals to clean pasture without dosing was less efficient. The latter may, however, still be a viable option in organic and other production systems where routine use of anthelmintics is banned, particularly if weaning and moving are combined or a second move is performed.  相似文献   
80.
Many wild and managed bee pollinators have experienced population declines over the past several decades, and molecular and population genetic tools have been valuable in understanding conservation threats across the bee tree of life. Emerging genomic tools have the potential to improve classical applications of conservation genetics, such as assessing species status, and quantifying genetic diversity, gene flow and effective population sizes. Genomic tools can also revolutionize novel research in bee conservation and management, including the identification of loci underlying adaptive and economically desirable traits, such as those involved in disease susceptibility, responses to multiple environmental stressors, and even discovering and understanding the hidden diversity of beneficial microorganisms associated with bees. In this perspective, we provide a survey of some of the ways genomic tools can be applied to bee conservation to bridge the gap between basic and applied genomics research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号