首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   573篇
  免费   72篇
  国内免费   3篇
  2021年   7篇
  2019年   3篇
  2018年   5篇
  2017年   4篇
  2016年   8篇
  2015年   32篇
  2014年   26篇
  2013年   29篇
  2012年   20篇
  2011年   25篇
  2010年   31篇
  2009年   27篇
  2008年   26篇
  2007年   28篇
  2006年   21篇
  2005年   18篇
  2004年   25篇
  2003年   16篇
  2002年   12篇
  2001年   24篇
  2000年   13篇
  1999年   15篇
  1998年   13篇
  1997年   10篇
  1996年   9篇
  1995年   8篇
  1994年   9篇
  1993年   7篇
  1992年   6篇
  1991年   12篇
  1990年   16篇
  1989年   9篇
  1988年   12篇
  1987年   3篇
  1986年   4篇
  1985年   7篇
  1984年   5篇
  1983年   3篇
  1982年   8篇
  1981年   6篇
  1980年   7篇
  1979年   3篇
  1978年   8篇
  1977年   4篇
  1976年   5篇
  1973年   3篇
  1972年   3篇
  1970年   8篇
  1969年   3篇
  1968年   4篇
排序方式: 共有648条查询结果,搜索用时 15 毫秒
101.
Niche construction theory explains how organisms' niche modifications may feed back to affect their evolutionary trajectories. In theory, the evolution of other species accessing the same modified niche may also be affected. We propose that this niche construction may be a general mechanism driving the evolution of mutualisms. Drosophilid flies benefit from accessing yeast‐infested fruits, but the consequences of this interaction for yeasts are unknown. We reveal high levels of variation among strains of Saccharomyces cerevisiae in their ability to modify fruits and attract Drosophila simulans. More attractive yeasts are dispersed more frequently, both in the lab and in the field, and flies associated with more attractive yeasts have higher fecundity. Although there may be multiple natural yeast and fly species interactions, our controlled assays in the lab and field provide evidence of a mutualistic interaction, facilitated by the yeast's niche modification.  相似文献   
102.

Background

Selection signatures aim to identify genomic regions underlying recent adaptations in populations. However, the effects of selection in the genome are difficult to distinguish from random processes, such as genetic drift. Often associations between selection signatures and selected variants for complex traits is assumed even though this is rarely (if ever) tested. In this paper, we use 8 breeds of domestic cattle under strong artificial selection to investigate if selection signatures are co-located in genomic regions which are likely to be under selection.

Results

Our approaches to identify selection signatures (haplotype heterozygosity, integrated haplotype score and FST) identified strong and recent selection near many loci with mutations affecting simple traits under strong selection, such as coat colour. However, there was little evidence for a genome-wide association between strong selection signatures and regions affecting complex traits under selection, such as milk yield in dairy cattle. Even identifying selection signatures near some major loci was hindered by factors including allelic heterogeneity, selection for ancestral alleles and interactions with nearby selected loci.

Conclusions

Selection signatures detect loci with large effects under strong selection. However, the methodology is often assumed to also detect loci affecting complex traits where the selection pressure at an individual locus is weak. We present empirical evidence to suggests little discernible ‘selection signature’ for complex traits in the genome of dairy cattle despite very strong and recent artificial selection.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-246) contains supplementary material, which is available to authorized users.  相似文献   
103.
Bayesian inference methods are extensively used to detect the presence of population structure given genetic data. The primary output of software implementing these methods are ancestry profiles of sampled individuals. While these profiles robustly partition the data into subgroups, currently there is no objective method to determine whether the fixed factor of interest (e.g. geographic origin) correlates with inferred subgroups or not, and if so, which populations are driving this correlation. We present ObStruct, a novel tool to objectively analyse the nature of structure revealed in Bayesian ancestry profiles using established statistical methods. ObStruct evaluates the extent of structural similarity between sampled and inferred populations, tests the significance of population differentiation, provides information on the contribution of sampled and inferred populations to the observed structure and crucially determines whether the predetermined factor of interest correlates with inferred population structure. Analyses of simulated and experimental data highlight ObStruct''s ability to objectively assess the nature of structure in populations. We show the method is capable of capturing an increase in the level of structure with increasing time since divergence between simulated populations. Further, we applied the method to a highly structured dataset of 1,484 humans from seven continents and a less structured dataset of 179 Saccharomyces cerevisiae from three regions in New Zealand. Our results show that ObStruct provides an objective metric to classify the degree, drivers and significance of inferred structure, as well as providing novel insights into the relationships between sampled populations, and adds a final step to the pipeline for population structure analyses.  相似文献   
104.
Cytoplasmic dynein 1 (dynein) is a minus end–directed microtubule motor protein with many cellular functions, including during cell division. The role of the light intermediate chains (LICs; DYNC1LI1 and 2) within the complex is poorly understood. In this paper, we have used small interfering RNAs or morpholino oligonucleotides to deplete the LICs in human cell lines and Xenopus laevis early embryos to dissect the LICs’ role in cell division. We show that although dynein lacking LICs drives microtubule gliding at normal rates, the LICs are required for the formation and maintenance of a bipolar spindle. Multipolar spindles with poles that contain single centrioles were formed in cells lacking LICs, indicating that they are needed for maintaining centrosome integrity. The formation of multipolar spindles via centrosome splitting after LIC depletion could be rescued by inhibiting Eg5. This suggests a novel role for the dynein complex, counteracted by Eg5, in the maintenance of centriole cohesion during mitosis.  相似文献   
105.
Adaptation of global food systems to climate change is essential to feed the world. Tropical cattle production, a mainstay of profitability for farmers in the developing world, is dominated by heat, lack of water, poor quality feedstuffs, parasites, and tropical diseases. In these systems European cattle suffer significant stock loss, and the cross breeding of taurine x indicine cattle is unpredictable due to the dilution of adaptation to heat and tropical diseases. We explored the genetic architecture of ten traits of tropical cattle production using genome wide association studies of 4,662 animals varying from 0% to 100% indicine. We show that nine of the ten have genetic architectures that include genes of major effect, and in one case, a single location that accounted for more than 71% of the genetic variation. One genetic region in particular had effects on parasite resistance, yearling weight, body condition score, coat colour and penile sheath score. This region, extending 20 Mb on BTA5, appeared to be under genetic selection possibly through maintenance of haplotypes by breeders. We found that the amount of genetic variation and the genetic correlations between traits did not depend upon the degree of indicine content in the animals. Climate change is expected to expand some conditions of the tropics to more temperate environments, which may impact negatively on global livestock health and production. Our results point to several important genes that have large effects on adaptation that could be introduced into more temperate cattle without detrimental effects on productivity.  相似文献   
106.
Summary The aim of the experiment was to determine if the estimated genetic distance between two populations could be used to predict the amount of heterosis that would occur when they were crossed. Eight lines of known relatedness to each other were produced by eight generations of sib mating and sub-lining. This produced lines that varied in coefficient of coancestry from zero to 0.78. Fourteen reciprocal crosses of these lines were used to measure heterosis for larval viability and adult fecundity. Gene frequencies at six polymorphic enzyme loci were used to estimate the genetic distances between lines, which were then compared with the known degrees of coancestry. The estimated genetic differences were poorly correlated with the known coancestry coefficients (r=0.4), possibly due to the small number of loci typed. Also genetic distances were only about 1/3 of what was expected. Selection acting on blocks of genes linked to the enzyme loci probably prevented the expected increase in homozygosity. Coancestry coefficient was correlated with heterosis (r=0.44–0.71). This level of correlation implied differences in heterosis among parent lines with the same level of coancestry. This variability is expected if a small number of loci explain most of the heterosis. The average level of heterosis was less than expected after eight generations of sib mating. This is most likely due to selection opposing the increase in homozygosity caused by inbreeding. The combination of these two imperfect correlations resulted in no significant correlation between genetic distance estimated from markers and heterosis.  相似文献   
107.
FLUXNET and modelling the global carbon cycle   总被引:3,自引:0,他引:3  
Measurements of the net CO2 flux between terrestrial ecosystems and the atmosphere using the eddy covariance technique have the potential to underpin our interpretation of regional CO2 source–sink patterns, CO2 flux responses to forcings, and predictions of the future terrestrial C balance. Information contained in FLUXNET eddy covariance data has multiple uses for the development and application of global carbon models, including evaluation/validation, calibration, process parameterization, and data assimilation. This paper reviews examples of these uses, compares global estimates of the dynamics of the global carbon cycle, and suggests ways of improving the utility of such data for global carbon modelling. Net ecosystem exchange of CO2 (NEE) predicted by different terrestrial biosphere models compares favourably with FLUXNET observations at diurnal and seasonal timescales. However, complete model validation, particularly over the full annual cycle, requires information on the balance between assimilation and decomposition processes, information not readily available for most FLUXNET sites. Site history, when known, can greatly help constrain the model‐data comparison. Flux measurements made over four vegetation types were used to calibrate the land‐surface scheme of the Goddard Institute for Space Studies global climate model, significantly improving simulated climate and demonstrating the utility of diurnal FLUXNET data for climate modelling. Land‐surface temperatures in many regions cool due to higher canopy conductances and latent heat fluxes, and the spatial distribution of CO2 uptake provides a significant additional constraint on the realism of simulated surface fluxes. FLUXNET data are used to calibrate a global production efficiency model (PEM). This model is forced by satellite‐measured absorbed radiation and suggests that global net primary production (NPP) increased 6.2% over 1982–1999. Good agreement is found between global trends in NPP estimated by the PEM and a dynamic global vegetation model (DGVM), and between the DGVM and estimates of global NEE derived from a global inversion of atmospheric CO2 measurements. Combining the PEM, DGVM, and inversion results suggests that CO2 fertilization is playing a major role in current increases in NPP, with lesser impacts from increasing N deposition and growing season length. Both the PEM and the inversion identify the Amazon basin as a key region for the current net terrestrial CO2 uptake (i.e. 33% of global NEE), as well as its interannual variability. The inversion's global NEE estimate of −1.2 Pg [C] yr−1 for 1982–1995 is compatible with the PEM‐ and DGVM‐predicted trends in NPP. There is, thus, a convergence in understanding derived from process‐based models, remote‐sensing‐based observations, and inversion of atmospheric data. Future advances in field measurement techniques, including eddy covariance (particularly concerning the problem of night‐time fluxes in dense canopies and of advection or flow distortion over complex terrain), will result in improved constraints on land‐atmosphere CO2 fluxes and the rigorous attribution of mechanisms to the current terrestrial net CO2 uptake and its spatial and temporal heterogeneity. Global ecosystem models play a fundamental role in linking information derived from FLUXNET measurements to atmospheric CO2 variability. A number of recommendations concerning FLUXNET data are made, including a request for more comprehensive site data (particularly historical information), more measurements in undisturbed ecosystems, and the systematic provision of error estimates. The greatest value of current FLUXNET data for global carbon cycle modelling is in evaluating process representations, rather than in providing an unbiased estimate of net CO2 exchange.  相似文献   
108.
Abstract 1. The biology of most invasive species in their native geographical areas remains largely unknown. Such studies are, however, crucial in shedding light on the ecological and evolutionary processes underlying biological invasions. 2. The present study focuses on the little fire ant Wasmannia auropunctata, a species native to Central and South America that has been widely introduced and which has become invasive throughout the tropics. We characterise and compare several ecological traits of native populations in French Guiana with those in one of its introduced ranges, New Caledonia. 3. We found ecologically heterogeneous populations of W. auropunctata coexisting in the species’ native geographical area. First, we found populations restricted to naturally perturbed areas (particularly floodplains) within the primary forest, and absent from the surrounding forest areas. These populations were characterised by low nest and worker densities. Second, we found dominant populations in recent anthropogenic areas (e.g. secondary forest or forest edge along road) characterised by high nest and worker densities, and associated with low ant species richness. The local dominance of W. auropunctata in such areas can be due to the displacement of other species (cause) or the filling‐up of empty habitats unsuitable to other ants (effect). With respect to their demographic features and ant species richness, the populations of native anthropogenic habitats were to a large extent similar to the invasive populations introduced into remote areas. 4. The results point to the need for greater research efforts to better understand the ecological and demographic features of invasive species within their native ranges.  相似文献   
109.
ABSTRACT: Large-scale sequencing of genomes has enabled the inference of phylogenies based on the evolution of genomic architecture, under such events as rearrangements, duplications, and losses. Many evolutionary models and associated algorithms have been designed over the last few years and have found use in comparative genomics and phylogenetic inference. However, the assessment of phylogenies built from such data has not been properly addressed to date. The standard method used in sequence-based phylogenetic inference is the bootstrap, but it relies on a large number of homologous characters that can be resampled; yet in the case of rearrangements, the entire genome is a single character. Alternatives such as the jackknife suffer from the same problem, while likelihood tests cannot be applied in the absence of well established probabilistic models. We present a new approach to the assessment of distance-based phylogenetic inference from whole-genome data; our approach combines features of the jackknife and the bootstrap and remains nonparametric. For each feature of our method, we give an equivalent feature in the sequence-based framework; we also present the results of extensive experimental testing, in both sequence-based and genome-based frameworks. Through the feature-by-feature comparison and the experimental results, we show that our bootstrapping approach is on par with the classic phylogenetic bootstrap used in sequence-based reconstruction, and we establish the clear superiority of the classic bootstrap for sequence data and of our corresponding new approach for rearrangement data over proposed variants. Finally, we test our approach on a small dataset of mammalian genomes, verifying that the support values match current thinking about the respective branches. Our method is the first to provide a standard of assessment to match that of the classic phylogenetic bootstrap for aligned sequences. Its support values follow a similar scale and its receiver-operating characteristics are nearly identical, indicating that it provides similar levels of sensitivity and specificity. Thus our assessment method makes it possible to conduct phylogenetic analyses on whole genomes with the same degree of confidence as for analyses on aligned sequences. Extensions to search-based inference methods such as maximum parsimony and maximum likelihood are possible, but remain to be thoroughly tested.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号