首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   754篇
  免费   62篇
  国内免费   3篇
  2022年   4篇
  2021年   8篇
  2020年   9篇
  2019年   5篇
  2018年   15篇
  2017年   7篇
  2016年   17篇
  2015年   25篇
  2014年   36篇
  2013年   36篇
  2012年   39篇
  2011年   39篇
  2010年   36篇
  2009年   30篇
  2008年   35篇
  2007年   39篇
  2006年   29篇
  2005年   27篇
  2004年   28篇
  2003年   21篇
  2002年   28篇
  2001年   30篇
  2000年   16篇
  1999年   21篇
  1998年   18篇
  1997年   11篇
  1996年   9篇
  1995年   4篇
  1994年   5篇
  1993年   7篇
  1992年   12篇
  1991年   17篇
  1990年   11篇
  1989年   13篇
  1988年   14篇
  1987年   13篇
  1986年   11篇
  1985年   10篇
  1984年   6篇
  1983年   10篇
  1982年   4篇
  1981年   4篇
  1980年   9篇
  1979年   7篇
  1978年   5篇
  1977年   4篇
  1974年   4篇
  1971年   5篇
  1970年   6篇
  1968年   5篇
排序方式: 共有819条查询结果,搜索用时 15 毫秒
41.
Methylmethane sulfonate (MMS) is an alkylating agent that may react with DNA and damage it. We investigated histological changes and apoptosis caused by MMS and the effects of curcumin on MMS treated mouse kidneys. Twenty-four mice were divided into four equal groups: controls injected with saline, a group injected with 40 mg/kg MMS, a group injected with 40 mg/kg MMS and given 100 mg/kg curcumin by gavage, and a group given 100 mg/kg curcumin by gavage. MMS caused congestion and vacuole formation, and elevated the apoptotic index significantly, but had no other effect on kidney tissue. Curcumin improved the congestion and vacuole formation caused by MMS and decreased the apoptotic index. Curcumin administered with MMS appears to decrease the deleterious effects of MMS on the kidney.  相似文献   
42.
43.
ExoS (453 amino acids) is a bi-functional type III cytotoxin produced by Pseudomonas aeruginosa. Residues 96-219 include the Rho GTPase-activating protein (RhoGAP) domain, and residues 234-453 include the 14-3-3-dependent ADP-ribosyltransferase domain. Earlier studies also identified an N-terminal domain (termed the membrane localization domain) that comprises residues 51-77 and includes a novel leucine-rich motif that targets ExoS to the perinuclear region of cultured cells. There is limited information on how ExoS or other type III cytotoxins enter and target intracellular host proteins. Type III-delivered ExoS localized to both plasma membrane and perinuclear region, whereas ExoS(DeltaMLD) was localized to the cytosol. Plasma membrane localization of ExoS was transient and had a half-life of approximately 20 min. Type III-delivered ExoS co-immunoprecipitated 14-3-3 proteins and Rab9, Rab6, and Rab5. Immunofluorescence experiments showed that ExoS colocalized with Rab9, Rab6, and Rab5. Fluorescent energy transfer was detected between ExoS and 14-3-3 proteins but not between ExoS and Rabs proteins. Together, these results indicate that type III-delivered ExoS localizes on the host endosomes and utilizes multiple pathways to traffic from the plasma membrane to the perinuclear region of intoxicated host cells.  相似文献   
44.
Botulinum neurotoxins (BoNTs) are zinc proteases that cleave SNARE proteins to elicit flaccid paralysis by inhibiting neurotransmitter-carrying vesicle fusion to the plasma membrane of peripheral neurons. Unlike other zinc proteases, BoNTs recognize extended regions of SNAP25 for cleavage; however, the molecular basis for this extended substrate recognition is unclear. Here, we define a multistep mechanism for recognition and cleavage of SNAP25 by BoNT/A. SNAP25 initially binds along the belt region of BoNT/A, which aligns the P5 residue to the S5 pocket at the periphery of the active site. Although the exact order of each step of recognition of SNAP25 by BoNT/A at the active site is not clear, the initial binding could subsequently orient the P4'-residue of SNAP25 to form a salt bridge with the S4'-residue, which opens the active site allowing the P1'-residue access to the S1'-pocket. Subsequent hydrophobic interactions between the P3 residue of SNAP25 and the S3 pocket optimize alignment of the scissile bond for cleavage. This explains how the BoNTs recognize and cleave specific coiled SNARE substrates and provides insight into the development of inhibitors to prevent botulism.  相似文献   
45.
46.
47.
Signaling system in Porphyromonas gingivalis based on a LuxS protein   总被引:8,自引:0,他引:8  
The luxS gene of quorum-sensing Vibrio harveyi is required for type 2 autoinducer production. We identified a Porphyromonas gingivalis open reading frame encoding a predicted peptide of 161 aa that shares 29% identity with the amino acid sequence of the LuxS protein of V. harveyi. Conditioned medium from a late-log-phase P. gingivalis culture induced the luciferase operon of V. harveyi, but that from a luxS insertional mutant did not. In P. gingivalis, the expression of luxS mRNA was environmentally controlled and varied according to the cell density and the osmolarity of the culture medium. In addition, differential display PCR showed that the inactivation of P. gingivalis luxS resulted in up-regulation of a hemin acquisition protein and an arginine-specific protease and reduced expression of a hemin-regulated protein, a TonB homologue, and an excinuclease. The data suggest that the luxS gene in P. gingivalis may function to control the expression of genes involved in the acquisition of hemin.  相似文献   
48.
ExoS is a bifunctional type III cytotoxin that is secreted by Pseudomonas aeruginosa. The N-terminal domain comprises a RhoGAP activity, while the C-terminal domain comprises a ADP-ribosyltransferase activity. Previous studies showed that ExoS ADP ribosylated Ras at Arg41 which interfered with the ability of Ras to interact with its guanine nucleotide exchange factor. Rap and Ras share considerable primary amino acid homology, including Arg41. In this study, we report that ExoS ADP ribosylates Rap1b at Arg41 and that ADP ribosylation of Arg41 inhibits the ability of C3G to stimulate guanine nucleotide exchange. The mechanism responsible for this inhibition is one in which ADP-ribosylated Rap binds inefficiently to C3G, relative to wild type Rap. This identifies a second member of the Ras GTPase subfamily that can be ADP ribosylated by ExoS and indicates that ExoS can inhibit both Ras and Rap signaling pathways in eukaryotic cells.  相似文献   
49.
Multiple signal transduction events are triggered in the host cell during invasion by the protozoan parasite Trypanosoma cruzi. Here, we report the regulation of host cell phosphatydilinositol 3-kinase (PI3K) and protein kinase B (PKB/Akt) activities by T. cruzi during parasite-host cell interaction. Treatment of nonphagocytic cells (Vero, L(6)E(9), and NIH 3T3) and phagocytic cells (human and J774 murine macrophages) with the selective PI3K inhibitors Wortmannin and LY294002 significantly impaired parasite invasion in a dose-dependent fashion. A strong activation of PI3K and PKB/Akt activities in Vero cells was detected when these cells were incubated with trypomastigotes or their isolated membranes. Consistently, we were unable to detect activation of PI3K or PKB/Akt activities in host cells during epimastigote (noninfective) membrane-host cell interaction. Infection of transiently transfected cells containing an inactive mutant PKB showed a significant inhibition of invasion compared with the active mutant-transfected cells. T. cruzi PI3K-like activity was also required in host cell invasion since treatment of trypomastigotes with PI3K inhibitors prior to infection reduced parasite entry. Taken together, these results indicate that PI3K and PKB/Akt activation in parasites, as in host cells induced by T. cruzi, is an early invasion signal required for successful trypomastigote internalization.  相似文献   
50.
Knight DA  Barbieri JT 《Biochemistry》1999,38(18):5858-5863
Earlier studies reported that Pseudomonas aeruginosa exoenzyme S (ExoS) possessed an absolute requirement for the eukaryotic protein factor activating exoenzyme S (FAS) for expressing ADP-ribosyltransferase activity. During the characterization of a serum-derived FAS-like activity, we observed the ability of a catalytic deletion peptide of ExoS (DeltaN222) to ADP-ribosylate target proteins in the absence of FAS. Characterization of the activation of DeltaN222 by FAS provided an opportunity to gain insight into the mechanism of ExoS activation by FAS. Under standard enzyme assay conditions, the initial rate of FAS-independent ADP-ribosyltransferase activity of DeltaN222 was not linear with time and rapidly approached zero. Dilution into high-ionic strength buffers stabilized DeltaN222 so it could express FAS-independent ADP-ribosyltransferase activity at a linear rate. This stabilization was a general salt effect, since dilution into a 1.0 M solution of either NaCH3COOH, NaCl, or KCl stabilized the ADP-ribosyltransferase activity of DeltaN222. Kinetic analysis in a high-ionic strength buffer showed that FAS enhanced the catalytic activity of DeltaN222 by increasing the affinity for NAD and stimulating the turnover rate. Velocity experiments indicated that the stabilization of DeltaN222 by high salt was not functionally identical to stabilization by FAS. Together, these data implicate a dual role for FAS in the allosteric activation of ExoS, involving both substrate binding and catalysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号