首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   602篇
  免费   50篇
  国内免费   1篇
  2023年   8篇
  2021年   8篇
  2020年   31篇
  2019年   57篇
  2018年   41篇
  2017年   7篇
  2016年   10篇
  2015年   7篇
  2014年   8篇
  2013年   41篇
  2012年   6篇
  2010年   22篇
  2009年   12篇
  2008年   16篇
  2007年   21篇
  2006年   32篇
  2005年   19篇
  2004年   3篇
  2003年   9篇
  2002年   22篇
  2001年   33篇
  2000年   25篇
  1999年   18篇
  1998年   25篇
  1997年   11篇
  1996年   36篇
  1995年   25篇
  1994年   8篇
  1993年   16篇
  1992年   12篇
  1991年   4篇
  1990年   3篇
  1989年   17篇
  1988年   3篇
  1987年   4篇
  1986年   2篇
  1985年   2篇
  1984年   8篇
  1983年   2篇
  1981年   2篇
  1980年   4篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1974年   2篇
  1953年   1篇
  1946年   1篇
  1945年   1篇
  1944年   2篇
排序方式: 共有653条查询结果,搜索用时 15 毫秒
571.
572.
Induced pluripotent stem cells (iPSC) hold tremendous potential for personalized cell‐based repair strategies to treat musculoskeletal disorders. To establish human iPSCs as a potential source of viable chondroprogenitors for articular cartilage repair, we assessed the in vitro chondrogenic potential of the pluripotent population versus an iPSC‐derived mesenchymal‐like progenitor population. We found the direct plating of undifferentiated iPSCs into high‐density micromass cultures in the presence of BMP‐2 promoted chondrogenic differentiation, however these conditions resulted in a mixed population of cells resembling the phenotype of articular cartilage, transient cartilage, and fibrocartilage. The progenitor cells derived from human iPSCs exhibited immunophenotypic features of mesenchymal stem cells (MSCs) and developed along multiple mesenchymal lineages, including osteoblasts, adipocytes, and chondrocytes in vitro. The data indicate the derivation of a mesenchymal stem cell population from human iPSCs is necessary to limit culture heterogeneity as well as chondrocyte maturation in the differentiated progeny. Moreover, as compared to pellet culture differentiation, BMP‐2 treatment of iPSC‐derived MSC‐like (iPSC–MSC) micromass cultures resulted in a phenotype more typical of articular chondrocytes, characterized by the enrichment of cartilage‐specific type II collagen (Col2a1), decreased expression of type I collagen (Col1a1) as well as lack of chondrocyte hypertrophy. These studies represent a first step toward identifying the most suitable iPSC progeny for developing cell‐based approaches to repair joint cartilage damage. J. Cell. Biochem. 114: 480–490, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
573.
Annexin A1 (AnxA1) is an important anti‐inflammatory mediator during granulocytic differentiation in all trans‐retinoic acid (ATRA) treated acute promyelocytic leukemic (APL) cells. Dexamethasone has been used successfully to prevent complications in ATRA‐treated APL patients, although its mechanism of action is still not clear. In the present study, we have examined the effect of dexamethasone on the modulation of AnxA1 in ATRA‐APL NB4 (ATRA‐NB4) cells, ATRA‐NB4 cells‐derived microparticles (MPs) and its role during cell–cell interaction between ATRA‐NB4 cells and endothelial cells. Our results have shown that dexamethasone can inhibit the percentage of ATRA‐NB4 cells expressing surface AnxA1 and its receptor FPR2/ALX in a time‐dependent manner based on flow cytometric analysis. However, dexamethasone treatment of ATRA‐NB4 cells has no significant effect on the level of AnxA1 mRNA, the total cellular level of AnxA1 protein or the release of AnxA1 from these cells, as determined by RT‐PCR, Western blotting, and ELISA, respectively. Further studies demonstrate that dexamethasone is able to significantly inhibit the adhesion of ATRA‐NB4 cells to endothelial cells, and this anti‐adhesive effect can be inhibited if the cells were pre‐treated with a neutralizing antibody specific for AnxA1. Finally, dexamethasone also enhances the release of AnxA1‐containing MPs from ATRA‐NB4 cells which can in turn prevent the adhesion of the ATRA‐NB4 cells to endothelial cells. We conclude that biologically active AnxA1 originating from dexamethasone‐treated ATRA‐APL cells and their MPs plays an anti‐adhesive effect and this contributes to inhibit the adhesion of ATRA‐APL cell to endothelial cells. J. Cell. Biochem. 114: 551–557, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
574.
Obesity instigates various health problems such as atherosclerosis, diabetes, and cancer. Resistin, an adipose tissue‐specific secretory adipokine, operates endocrine functions through increasing insulin resistance. Vascular smooth muscle cells (SMC) migrate into the subendothelial space and proliferate, thereby contributing to neointimal formation in atherosclerosis and restenosis. The aim of this study was to elucidate whether celastrol obtained from Tripterygium wilfordii Hook, inhibited human aortic SMC migration. Celastrol capable of antagonizing inflammatory responses attenuated the resistin secretion from THP‐1‐derived macrophages. The macrophage‐conditioned media promoted SMC proliferation and MMP‐2 production, which was dampened by 10–100 nM celastrol. Celastrol encumbered the SMC migration in response to 50 ng/ml resistin, concomitant with the inhibition of induction of connective tissue growth factor and collagen I/IV. In addition, celastrol disabled human aortic SMC exposed to resistin from migrating. The resistin‐induced shedding of integrin β2/β3 expression was demoted by celastrol, thereby contributing to the inhibition of collagen matrix‐SMC interaction. Next, resistin‐induced Toll‐like receptor‐4 (TLR‐4) expression was abrogated by celastrol, indicating that TLR‐4 was the resistin signaling receptor that was blocked by celastrol. Collectively, these results demonstrate that anti‐inflammatory celastrol blunted the macrophage secretion of the adipokine resistin, and suppressed the SMC migration by disturbing the interaction between SMC and intimal collagen matrix. Therefore, celastrol may inhibit atherogenic migration of vascular SMC upon resistin loading by intimal macrophages within atherosclerotic lesions. J. Cell. Biochem. 114: 398–408, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
575.
The aim of this study was to elucidate the influence of receptor activity modifying protein 1 (RAMP1) overexpression on the expression and distribution of calcitonin receptor‐like receptor (CRLR) in MG‐63 cells. Our research also focused on whether RAMP1 overexpression enhanced the promoting effect of exogenous CGRP on osteogenic differentiation in MG‐63 cells. We first constructed a eukaryotic expression vector containing human RAMP1 and stably transfected it into MG‐63 cells. Real‐time PCR and Western blotting were used to determine the expression levels of RAMP1 and CRLR mRNA and protein, respectively. Immunofluorescence analysis was employed to compare the distribution of CRLR in transfected cells. After treatment with CGRP, the extent of osteogenic differentiation was evaluated by simultaneous monitoring of alkaline phosphatase activity, the expression patterns of osteoblastic markers and mineralisation staining. We found that RAMP1 was more highly expressed in the transfected group compared with the control groups (P < 0.01). The CRLR expression was significantly higher than that in the control groups (P < 0.05). In addition, after 7 days of CGRP treatment to induce osteogenic differentiation, the expression of collagen I mRNA was markedly increased in the transfected group (P < 0.05). The transfected group exhibited more granular precipitation in the cytoplasm with alkaline phosphatase staining after 7 and 14 days of differentiation. When stained with Alizarin Red, cells overexpressing RAMP1 were darker and formed many mineralised nodules with clear boundaries and calcium deposition typical of mineralised bone matrix structures at 28 days post‐induction of differentiation. The CGRP‐induced ALP activity in the RAMP1 overexpression group was significantly higher 3, 6 and 9 days after induction than that in the two control groups (P < 0.05). RAMP1 overexpression promotes CRLR expression, localisation on the cell membrane and enhanced CGRP‐mediated differentiation of MG‐63 cells. This study contributes to a better understanding of the molecular mechanisms governing CGRP‐induced MG‐63 differentiation. J. Cell. Biochem. 114: 314–322, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
576.
The effect of UVC irradiation was investigated on a model of brain cancer and a model of experimental brain metastasis. For the brain cancer model, brain cancer cells were injected stereotactically into the brain. For the brain metastasis model, lung cancer cells were injected intra‐carotidally or stereotactically. The U87 human glioma cell line was used for the brain cancer model, and the Lewis lung carcinoma (LLC) was used for the experimental brain metastasis model. Both cancer cell types were labeled with GFP in the nucleus and RFP in the cytoplasm. A craniotomy open window was used to image single cancer cells in the brain. This double labeling of the cancer cells with GFP and RFP enabled apoptosis of single cells to be imaged at the subcellular level through the craniotomy open window. UVC irradiation, beamed through the craniotomy open window, induced apoptosis in the cancer cells. UVC irradiation was effective on LLC and significantly extended survival of the mice with experimental brain metastasis. In contrast, the U87 glioma was relatively resistant to UVC irradiation. The results of this study suggest the use of UVC for treatment of superficial brain cancer or metastasis. J. Cell. Biochem. 114: 428–434, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
577.
We have previously shown that acute increases in pulmonary blood flow (PBF) are limited by a compensatory increase in pulmonary vascular resistance (PVR) via an endothelin‐1 (ET‐1) dependent decrease in nitric oxide synthase (NOS) activity. The mechanisms underlying the reduction in NO signaling are unresolved. Thus, the purpose of this study was to elucidate mechanisms of this ET‐1–NO interaction. Pulmonary arterial endothelial cells were acutely exposed to shear stress in the presence or absence of tezosentan, a combined ETA/ETB receptor antagonist. Shear increased NOx, eNOS phospho‐Ser1177, and H2O2 and decreased catalase activity; tezosentan enhanced, while ET‐1 attenuated all of these changes. In addition, ET‐1 increased eNOS phospho‐Thr495 levels. In lambs, 4 h of increased PBF decreased H2O2, eNOS phospho‐Ser1177, and NOX levels, and increased eNOS phospho‐Thr495, phospho‐catalase, and catalase activity. These changes were reversed by tezosentan. PEG‐catalase reversed the positive effects of tezosentan on NO signaling. In all groups, opening the shunt resulted in a rapid increase in PBF by 30 min. In vehicle‐ and tezosentan/PEG‐catalase lambs, PBF did not change further over the 4 h study period. PVR fell by 30 min in vehicle‐ and tezosentan‐treated lambs, and by 60 min in tezosentan/PEG‐catalase‐treated lambs. In vehicle‐ and tezosentan/PEG‐catalase lambs, PVR did not change further over the 4 h study period. In tezosentan‐treated lambs, PBF continued to increase and LPVR to decrease over the 4 h study period. We conclude that acute increases in PBF are limited by an ET‐1 dependent decrease in NO production via alterations in catalase activity, H2O2 levels, and eNOS phosphorylation. J. Cell. Biochem. 114: 435–447, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
578.
Wnt‐signaling pathway is implicated in pancreatic development and functional regulation of mature beta‐cells. Wnt3a/Wnt pathway activation expands islet cell mass in vitro by increasing proliferation and decreasing apoptosis of beta‐cells, thereby enhancing its function. However, the signaling pathways that mediate these effects remain unknown. By using a clonal beta‐cell line (NIT‐1), we examined the role of IRS2/PI3K in the mediation of Wnt3a‐stimulated beta‐cell growth. Real‐time PCR and Western blot were employed to investigate the activity of Wnt/β‐catenin and IRS2/PI3K signaling. Proliferation of NIT‐1 cells was assessed by BrdU incorporation, and apoptosis was quantitatively determined by TUNEL and flow cytometry (FCM). Dkk1, an inhibitor of Wnt signaling, and wortmannin, an inhibitor of PI3K, were also used. Results showed that Wnt3a rapidly activated Wnt/β‐catenin signaling, promoted IRS2 expression and Akt phosphorylation in NIT‐1 cells. These effects were completely abrogated by Dkk1 or partially eliminated by wortmannin. Wnt3a also promoted NIT‐1 cell proliferation, inhibited cytokine‐induced beta‐cell apoptosis, and increased insulin secretion. Both of these effects were also eliminated by Dkk1 or wortmannin. Our results demonstrated that Wnt3a regulates proliferation, apoptosis and enhances function of pancreatic NIT‐1 beta cells via activation of Wnt/β‐catenin signaling, involving crosstalk with IRS2/PI3K signaling, with the effect of Wnt signaling on beta‐cells also being IRS2/PI3K/AKT dependent. J. Cell. Biochem. 114: 1488–1497, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   
579.
580.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号