首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   630篇
  免费   59篇
  2017年   10篇
  2016年   8篇
  2015年   12篇
  2014年   23篇
  2013年   19篇
  2012年   24篇
  2011年   32篇
  2010年   18篇
  2009年   17篇
  2008年   22篇
  2007年   20篇
  2006年   18篇
  2005年   19篇
  2004年   21篇
  2003年   17篇
  2002年   10篇
  2001年   21篇
  2000年   21篇
  1999年   14篇
  1998年   15篇
  1997年   11篇
  1996年   8篇
  1995年   9篇
  1994年   9篇
  1993年   9篇
  1992年   7篇
  1991年   17篇
  1990年   11篇
  1989年   8篇
  1988年   8篇
  1987年   7篇
  1986年   7篇
  1985年   7篇
  1984年   6篇
  1982年   9篇
  1981年   10篇
  1980年   11篇
  1979年   12篇
  1978年   10篇
  1977年   9篇
  1976年   12篇
  1975年   8篇
  1973年   8篇
  1972年   7篇
  1970年   10篇
  1969年   8篇
  1968年   7篇
  1967年   8篇
  1966年   8篇
  1962年   6篇
排序方式: 共有689条查询结果,搜索用时 78 毫秒
71.
72.
73.
Stable isotope tracer studies of apoprotein flux in rodent models present difficulties as they require working with small volumes of plasma. We demonstrate the ability to measure apoprotein flux by administering either (2)H- or (18)O-labeled water to mice and then subjecting samples to LC-MS/MS analyses; we were able to simultaneously determine the labeling of several proteolytic peptides representing multiple apoproteins. Consistent with relative differences reported in the literature regarding apoprotein flux in humans, we found that the fractional synthetic rate of apoB is greater than apoA1 in mice. In addition, the method is suitable for quantifying acute changes in protein flux: we observed a stimulation of apoB production in mice following an intravenous injection of Intralipid and a decrease in apoB production in mice treated with an inhibitor of microsomal triglyceride transfer protein. In summary, we demonstrate a high-throughput method for studying apoprotein kinetics in rodent models. Although notable differences exist between lipoprotein profiles that are observed in rodents and humans, we expect that the method reported here has merit in studies of dyslipidemia as i) rodent models can be used to probe target engagement in cases where one aims to modulate apoprotein production and ii) the approach should be adaptable to studies in humans.  相似文献   
74.
Enveloped viruses employ diverse and complex strategies for wrapping at cellular membranes, many of which are poorly understood. Here, an ultrastructural study of herpes simplex virus 1 (HSV1)‐infected cells revealed envelopment in tubular membranes. These tubules were labelled by the fluid phase marker horseradish peroxidase (HRP), and were observed to wrap capsids as early as 2 min after HRP addition, indicating that the envelope had recently cycled from the cell surface. Consistent with this, capsids did not colocalise with either the trans‐Golgi network marker TGN46 or late endosomal markers, but showed coincidence with the transferrin receptor. Virus glycoproteins were retrieved from the plasma membrane (PM) to label wrapping capsids, a process that was dependent on both dynamin and Rab5. Combined depletion of Rab5 and Rab11 reduced virus yield to <1%, resulting in aberrant localisation of capsids. These results suggest that endocytosis from the PM into endocytic tubules provides the main source of membrane for HSV1, and reveal a new mechanism for virus exploitation of the endocytic pathway.  相似文献   
75.
Intracellular proteins are in a state of flux, continually being degraded into amino acids and resynthesized into new proteins. The rate of this biochemical recycling process varies across proteins and is emerging as an important consideration in drug discovery and development. Here, we developed a triple-stage quadrupole mass spectrometry assay based on product ion measurements at unit resolution and H(2)(18)O stable tracer incorporation to measure relative protein synthesis rates. As proof of concept, we selected to measure the relative in vivo synthesis rate of ApoB100, an apolipoprotein where elevated levels are associated with an increased risk of coronary heart disease, in plasma-isolated very low density lipoprotein (VLDL) and low density lipoprotein (LDL) in a mouse in vivo model. In addition, serial time points were acquired to measure the relative in vivo synthesis rate of mouse LDL ApoB100 in response to vehicle, microsomal triacylglycerol transfer protein (MTP) inhibitor, and site-1 protease inhibitor, two potential therapeutic targets to reduce plasma ApoB100 levels at 2 and 6 h post-tracer-injection. The combination of H(2)(18)O tracer with the triple quadrupole mass spectrometry platform creates an assay that is relatively quick and inexpensive to transfer across different biological model systems, serving as an ideal rapid screening tool for relative protein synthesis in response to treatment.  相似文献   
76.

Background

Recent advances in sequencing technologies have enabled metagenomic analyses of many human body sites. Several studies have catalogued the composition of bacterial communities of the surface of human skin, mostly under static conditions in healthy volunteers. Skin injury will disturb the cutaneous homeostasis of the host tissue and its commensal microbiota, but the dynamics of this process have not been studied before. Here we analyzed the microbiota of the surface layer and the deeper layers of the stratum corneum of normal skin, and we investigated the dynamics of recolonization of skin microbiota following skin barrier disruption by tape stripping as a model of superficial injury.

Results

We observed gender differences in microbiota composition and showed that bacteria are not uniformly distributed in the stratum corneum. Phylogenetic distance analysis was employed to follow microbiota development during recolonization of injured skin. Surprisingly, the developing neo-microbiome at day 14 was more similar to that of the deeper stratum corneum layers than to the initial surface microbiome. In addition, we also observed variation in the host response towards superficial injury as assessed by the induction of antimicrobial protein expression in epidermal keratinocytes.

Conclusions

We suggest that the microbiome of the deeper layers, rather than that of the superficial skin layer, may be regarded as the host indigenous microbiome. Characterization of the skin microbiome under dynamic conditions, and the ensuing response of the microbial community and host tissue, will shed further light on the complex interaction between resident bacteria and epidermis.  相似文献   
77.
Junctional adhesion molecule (JAM) is involved in tight junction (TJ) formation in epithelial cells. Three JAMs (A, B, and C) are expressed in rat hepatocytes, but only rat JAM-A is present in polarized WIF-B cells, a rat-human hepatic line. We used knockdown (KD) and overexpression in WIF-B cells to determine the role of JAM-A in the development of hepatic polarity. Expression of rat JAM-A short hairpin RNA resulted in approximately 50% KD of JAM-A and substantial loss of hepatic polarity, as measured by the absence of apical cysts formed by adjacent cells and sealed by TJ belts. When inhibitory RNA-resistant human JAM-A (huWT) was expressed in KD cells, hepatic polarity was restored. In contrast, expression of JAM-A that either lacked its PDZ-binding motif (huDeltaC-term) or harbored a point mutation (T273A) did not complement, indicating that multiple sites within JAM-A's cytoplasmic tail are required for the development of hepatic polarity. Overexpression of huWT in normal WIF-B cells unexpectedly blocked WIF-B maturation to the hepatic phenotype, as did expression of three huJAM-A constructs with single point mutations in putative phosphorylation sites. In contrast, huDeltaC-term was without effect, and the T273A mutant only partially blocked maturation. Our results show that JAM-A is essential for the development of polarity in cultured hepatic cells via its possible phosphorylation and recruitment of relevant PDZ proteins and that hepatic polarity is achieved within a narrow range of JAM-A expression levels. Importantly, formation/maintenance of TJs and the apical domain in hepatic cells are linked, unlike simple epithelia.  相似文献   
78.
Tissue-engineered fibrocartilage could become a feasible option for replacing tissues such as the knee meniscus or temporomandibular joint disc. This study employed five growth factors (insulin-like growth factor-I, transforming growth factor-beta1, epidermal growth factor, platelet-derived growth factor-BB, and basic fibroblast growth factor) in a scaffoldless approach with costal chondrocytes, attempting to improve biochemical and mechanical properties of engineered constructs. Samples were quantitatively assessed for total collagen, glycosaminoglycans, collagen type I, collagen type II, cells, compressive properties, and tensile properties at two time points. Most treated constructs had lower biomechanical and biochemical properties than the controls with no growth factors, suggesting a detrimental effect, but the treatment with insulin-like growth factor-I tended to improve the constructs. Additionally, the 6-week time point was consistently better than that at 3 weeks, with total collagen, glycosaminoglycans, and aggregate modulus doubling during this time. Further optimization of the time in culture and exogenous stimuli will be important in making a more functional replacement tissue.  相似文献   
79.
It was hypothesized that renal sympathetic nerve activity (RSNA) and neuronal nitric oxide synthase (nNOS) are involved in the acute inhibition of renin secretion and the natriuresis following slow NaCl loading (NaLoad) and that RSNA participates in the regulation of arterial blood pressure (MABP). This was tested by NaLoad after chronic renal denervation with and without inhibition of nNOS by S-methyl-thiocitrulline (SMTC). In addition, the acute effects of renal denervation on MABP and sodium balance were assessed. Rats were investigated in the conscious, catheterized state, in metabolic cages, and acutely during anesthesia. NaLoad was performed over 2 h by intravenous infusion of hypertonic solution (50 micromol.min(-1).kg body mass(-1)) at constant body volume conditions. SMTC was coinfused in amounts (20 microg.min(-1).kg(-1)) reported to selectively inhibit nNOS. Directly measured MABPs of acutely and chronically denervated rats were less than control (15% and 9%, respectively, P < 0.005). Plasma renin concentration (PRC) was reduced by renal denervation (14.5 +/- 0.2 vs. 19.3 +/- 1.3 mIU/l, P < 0.005) and by nNOS inhibition (12.4 +/- 2.3 vs. 19.6 +/- 1.6 mlU/l, P < 0.005). NaLoad reduced PRC (P < 0.05) and elevated MABP modestly (P < 0.05) and increased sodium excretion six-fold, irrespective of renal denervation and SMTC. The metabolic data demonstrated that renal denervation lowered sodium balance during the first days after denervation (P < 0.001). These data show that renal denervation decreases MABP and renin secretion. However, neither renal denervation nor nNOS inhibition affects either the renin down-regulation or the natriuretic response to acute sodium loading. Acute sodium-driven renin regulation seems independent of RSNA and nNOS under the present conditions.  相似文献   
80.
Plants that have evolved to survive on metal‐rich soils—metallophytes—have key values that must drive research of their unique properties and ultimately their conservation. The ability of metallophytes to tolerate extreme metal concentrations commends them for revegetation of mines and metal‐contaminated sites. Metallophytes can also be exploited in environmental technologies, for example, phytostabilization, phytoremediation, and phytomining. Actions towards conserving metallophyte species are imperative, as metallophytes are increasingly under threat of extinction from mining activity. Although many hundreds of papers describe both the biology and applications of metallophytes, few have investigated the urgent need to conserve these unique species. This paper identifies the current state of metallophyte research, and advocates future research needs for the conservation of metallophyte biodiversity and the sustainable uses of metallophyte species in restoration, rehabilitation, contaminated site remediation, and other nascent phytotechnologies. Six fundamental questions are addressed: (1) Is enough known about the global status of metallophytes to ensure their conservation? (2) Are metallophytes threatened by the activities of the minerals industry, and can their potential for the restoration or rehabilitation of mined and disturbed land be realized? (3) What problems exist in gaining prior informed consent to access metallophyte genetic resources and how can the benefits arising from their uses be equitably shared? (4) What potential do metallophytes offer as a resource base for phytotechnologies? (5) Can genetic modification be used to “design” metallophytes to use in the remediation of contaminated land? (6) Does the prospect of using metallophytes in site remediation and restoration raise ethical issues?  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号