首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   181篇
  免费   13篇
  国内免费   1篇
  2014年   3篇
  2013年   4篇
  2011年   3篇
  2010年   5篇
  2009年   5篇
  2008年   7篇
  2007年   8篇
  2006年   2篇
  2005年   5篇
  1998年   2篇
  1997年   10篇
  1996年   5篇
  1995年   9篇
  1994年   2篇
  1991年   6篇
  1990年   3篇
  1989年   6篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   4篇
  1984年   2篇
  1981年   6篇
  1978年   2篇
  1975年   3篇
  1973年   2篇
  1972年   4篇
  1971年   4篇
  1964年   3篇
  1963年   1篇
  1962年   1篇
  1961年   1篇
  1960年   1篇
  1959年   4篇
  1958年   9篇
  1957年   6篇
  1956年   6篇
  1955年   4篇
  1954年   4篇
  1953年   2篇
  1952年   3篇
  1951年   4篇
  1950年   3篇
  1949年   1篇
  1948年   1篇
  1947年   1篇
  1928年   1篇
  1926年   1篇
  1922年   1篇
  1917年   1篇
排序方式: 共有195条查询结果,搜索用时 15 毫秒
81.
Mycorrhiza formation represents a significant carbon (C) acquisition alternative for orchid species, particularly those that remain achlorophyllous through all life stages. As it is known that orchid mycorrhizas facilitate nutrient transfer (most notably of C), it has not been resolved if C transfer occurs only after lysis of mycorrhizal structures (fungal pelotons) or also across the mycorrhizal interface of pre‐lysed pelotons. We used high‐resolution secondary ion mass spectrometry (nanoSIMS) and labelling with enriched 13CO2 to trace C transfers, at subcellular scale, across mycorrhizal interfaces formed by Rhizanthella gardneri, an achlorphyllous orchid. Carbon was successfully traced in to the fungal portion of orchid mycorrhizas. However, we did not detect C movement across intact mycorrhizal interfaces up to 216 h post 13CO2 labelling. Our findings provide support for the hypothesis that C transfer from the mycorrhizal fungus to orchid, at least for R. gardneri, likely occurs after lysis of the fungal peloton.  相似文献   
82.
83.
ABSTRACT Noninvasive scat sampling methods can generate large samples sizes, collected over vast landscapes, ideal for addressing wildlife conservation and management questions. However, the cost of genotyping scat samples limits the accessibility of these techniques. We describe detection-dog methods for matching large numbers of scat samples to the individual, reducing or eliminating the need for sample genotyping. Three dogs correctly matched 25 out of 28 samples from 6 captive maned wolves (Chrysocyon brachyurus) of known identity. Sample scent-matching can increase overall accessibility and breadth of applications of noninvasive scat-collection methods to important landscape scale problems in wildlife sciences.  相似文献   
84.
85.
Understanding the genetic architecture of phenotypic plasticity is required to assess how populations might respond to heterogeneous or changing environments. Although several studies have examined population‐level patterns in environmental heterogeneity and plasticity, few studies have examined individual‐level variation in plasticity. Here, we use the North Carolina II breeding design and translocation experiments between two populations of Chinook salmon to detail the genetic architecture and plasticity of offspring survival and growth. We followed the survival of 50 800 offspring through the larval stage and used parentage analysis to examine survival and growth through freshwater rearing. In one population, we found that additive genetic, nonadditive genetic and maternal effects explained 25%, 34% and 55% of the variance in larvae survival, respectively. In the second population, these effects explained 0%, 24% and 61% of the variance in larvae survival. In contrast, fry survival was regulated primarily by additive genetic effects, which indicates a shift from maternal to genetic effects as development proceeds. Fry growth also showed strong additive genetic effects. Translocations between populations revealed that offspring survival and growth varied between environments, the degree of which differed among families. These results indicate genetic differences among individuals in their degree of plasticity and consequently their ability to respond to environmental variation.  相似文献   
86.
Repeated exposure and flooding of the Sunda and Sahul shelves during Pleistocene sea‐level fluctuations is thought to have contributed to the isolation and diversification of sea‐basin populations within the Coral Triangle. This hypothesis has been tested in numerous phylogeographical studies, recovering an assortment of genetic patterns that the authors have generally attributed to differences in larval dispersal capability or adult habitat specificity. This study compares phylogeographical patterns from mitochondrial COI sequences among two co‐distributed seastars that differ in their adult habitat and dispersal ability, and two seastar ectosymbionts that differ in their degree of host specificity. Of these, only the seastar Linckia laevigata displayed a classical pattern of Indian‐Pacific divergence, but with only moderate genetic structure (ΦCT = 0.067). In contrast, the seastar Protoreaster nodosus exhibited strong structure (ΦCT = 0.23) between Teluk Cenderawasih and the remainder of Indonesia, a pattern of regional structure that was echoed in L. laevigataCT = 0.03) as well as its obligate gastropod parasite Thyca crystallinaCT = 0.04). The generalist commensal shrimp, Periclimenes soror showed little genetic structuring across the Coral Triangle. Despite species‐specific phylogeographical patterns, all four species showed departures from neutrality that are consistent with massive range expansions onto the continental shelves as the sea levels rose, and that date within the Pleistocene epoch. Our results suggest that habitat differences may affect the manner in which species responded to Pleistocene sea‐level fluctuations, shaping contemporary patterns of genetic structure and diversity.  相似文献   
87.
88.
89.
In the Upper Oldman River, Alberta, introduced non‐native hatchery rainbow trout (Oncorhynchus mykiss) hybridize with native westslope cutthroat trout (O. clarkii), resulting in a hybrid swarm. Rainbow trout dominate at low elevations (< 1250 m) in the river mainstem, cutthroat in high‐elevation tributaries (> 1400 m), and hybrids are numerically dominant in the mid‐elevation range. We hypothesized that metabolism of rainbow trout would exceed that of cutthroat trout, and that the elevation gradient in genetic makeup would be mirrored by a gradient in metabolic traits, with intermediate traits in the hybrid‐dominated ecotone. Metabolic traits were measured and regressed against the genetic makeup of individuals and elevation. Rainbow trout had higher oxygen consumption rates (OCRs), higher white muscle lactate dehydrogenase (LDH), and citrate synthase (CS) activity, and higher plasma acetylcholinesterase (AchE) than cutthroat trout. Hybrids had intermediate OCRs and AchE, but LDH activity as high as rainbow trout. While hybrid zones are usually modelled as a balance between cross species mating and selection against hybrids, ecotonal hybrid zones, where hybrids proliferate in intermediate habitats and have traits that appear well suited to ecotonal conditions, have been proposed for some plants and animals, and may have important implications for resource management and conservation. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 56–72.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号