首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   999篇
  免费   30篇
  2016年   4篇
  2015年   9篇
  2014年   16篇
  2013年   25篇
  2012年   27篇
  2011年   49篇
  2010年   69篇
  2009年   70篇
  2008年   71篇
  2007年   72篇
  2006年   68篇
  2005年   55篇
  2004年   28篇
  2003年   21篇
  2002年   5篇
  2001年   11篇
  2000年   12篇
  1999年   10篇
  1998年   34篇
  1997年   23篇
  1996年   22篇
  1995年   13篇
  1994年   14篇
  1993年   11篇
  1992年   12篇
  1991年   15篇
  1990年   22篇
  1989年   16篇
  1988年   16篇
  1987年   15篇
  1986年   11篇
  1985年   7篇
  1984年   10篇
  1983年   8篇
  1982年   7篇
  1981年   10篇
  1980年   6篇
  1979年   8篇
  1976年   4篇
  1975年   4篇
  1972年   5篇
  1971年   6篇
  1959年   7篇
  1958年   12篇
  1956年   12篇
  1955年   5篇
  1954年   6篇
  1953年   10篇
  1952年   8篇
  1950年   5篇
排序方式: 共有1029条查询结果,搜索用时 15 毫秒
151.
Understanding the mechanisms by which climate change will affect animal populations is vital for adaptive management. Many studies have described changes in the timing of biological events, which can produce phenological mismatch. Direct effects on prey abundance might also be important, but have rarely been studied. We examine the likely importance of variation in prey abundance in driving the demographics of a European golden plover ( Pluvialis apricaria ) population at its southern range margin. Previous studies have correlated plover productivity with the abundance of their adult cranefly (Tipulidae) prey, and modelled the phenology of both plover breeding and cranefly emergence in relation to temperature. Our analyses demonstrate that abundance of adult craneflies is correlated with August temperature in the previous year. Correspondingly, changes in the golden plover population are negatively correlated with August temperature 2 years earlier. Predictions of annual productivity, based on temperature-mediated reductions in prey abundance, closely match observed trends. Modelled variation in annual productivity for a future scenario of increasing August temperatures predicts a significant risk of extinction of the golden plover population over the next 100 years, depending upon the magnitude of warming. Direct effects of climate warming upon cranefly populations may therefore cause northward range contractions of golden plovers, as predicted by climate envelope modelling. Craneflies are an important food source for many northern and upland birds, and our results are likely to have wide relevance to these other species. Research into the potential for habitat management to improve the resilience of cranefly populations to high temperature should be an urgent priority.  相似文献   
152.
To accurately predict ecosystem responses induced by climate warming at local‐to‐global scales, models are in need of more precise knowledge of response during periods of environmental stress such as drought. In this paper, we studied environmental control of canopy‐level water use efficiency (WUE) during drought at an eddy flux site in an oak‐hickory forest in central Missouri, USA. Two consecutive severe droughts in the summers of 2006 and 2007 afforded coverage of a broad range of environmental conditions. We stratified data to obtain subranges that minimized cross‐correlations among putative WUE‐controlling factors. Our results showed that WUE was subject to control by atmospheric saturation deficit (ASD), soil water potential (SWP) and the ratio of diffuse to total photosynthetically active radiation (If/It). Generally, WUE was found to scale with 1/(ASD)0.5, consistent with predictions from stomatal optimization theory. In contrast, SWP and If/It were related to WUE in a linear fashion. ASD was better correlated with WUE than either of the other two factors. It was also observed that the relationship between WUE and any single controlling factor was subject to influence of the other two. One such example was an opposite response of WUE to SWP between low and high ASD values, suggesting a breakdown of stomatal optimality under severe environmental stresses and a shift from optimal stomatal regulation to nonstomatal regulation at leaf scale. We have demonstrated that different data handling (stratified vs. nonstratified) or selection (hourly vs. daily) could lead to different conclusions on the relationship between WUE and its controls. For this reason, we recommend modelers to be cautious when applying WUE‐response formulas at environmental conditions or at time scales different from those at which they are derived.  相似文献   
153.
1. Barriers to immigration, all else being equal, should in principle depress local abundance and reduce local species richness. These issues are particularly relevant to stream‐dwelling species when improperly designed road crossings act as barriers to migration with potential impacts on the viability of upstream populations. However, because abundance and richness are highly spatially and temporally heterogeneous and the relative importance of immigration on demography is uncertain, population‐ and community‐level effects can be difficult to detect. 2. In this study, we tested the effects of potential barriers to upstream movements on the local abundance and species richness of a diverse assemblage of resident stream fishes in the Monongahela National Forest, West Virginia, U.S.A. Fishes were sampled using simple standard techniques above‐ and below road crossings that were either likely or unlikely to be barriers to upstream fish movements (based on physical dimensions of the crossing). We predicted that abundance of resident fishes would be lower in the upstream sections of streams with predicted impassable barriers, that the strength of the effect would vary among species and that variable effects on abundance would translate into lower species richness. 3. Supporting these predictions, the statistical model that best accounted for variation in abundance and species richness included a significant interaction between location (upstream or downstream of crossing) and type (passable or impassable crossing). Stream sections located above predicated impassable culverts had fewer than half the number of species and less than half the total fish abundance, while stream sections above and below passable culverts had essentially equivalent richness and abundance. 4. Our results are consistent with the importance of immigration and population connectivity to local abundance and species richness of stream fishes. In turn, these results suggest that when measured at appropriate scales (multiple streams within catchments), with simple protocols amenable to use by management agencies, differences in local abundance and species richness may serve as indicators of the extent to which road crossings are barriers to fish movement and help determine whether road‐crossing improvements have restored connectivity to stream fish populations and communities.  相似文献   
154.
1. Scant information is available on leaf breakdown in streams of arid and semiarid regions, including the Mediterranean, where environmental heterogeneity can be high and the relationship between stream characteristics and leaf breakdown is poorly known. We tested the hypotheses that differences in leaf breakdown metrics would be substantially higher between mountain and lowland Mediterranean streams than among streams within each subregion and that variability among streams would be substantially higher in the lowlands, because permanent reaches in the semiarid lowland streams are rare and isolated. 2. We compared leaf breakdown and associated dynamics of nutrients, fungi and invertebrates in low‐order Mediterranean streams draining sub‐humid forests in the Sierra Nevada Mountains and nearby semiarid lowlands of south‐eastern Spain. Streams differed between the two subregions mainly in water ion content, temperature and riparian tree cover. We detected higher environmental heterogeneity among streams within the lowlands compared to the Sierra Nevada mountain range. In the lowlands, breakdown coefficients (k) of alder leaves spanned almost the entire range reported for this species from temperate streams, overlapping with less variable breakdown coefficients in the Sierra Nevada. 3. The high variability of k values among the lowland sites appeared to be caused primarily by variability in the composition and abundance of a few leaf‐consuming invertebrate taxa, particularly the snail Melanopsis praemorsa. Fungal and nutrient dynamics were less variable among sites within each subregion. 4. These results indicate that the critical condition for stream functional assessment of well‐constrained breakdown rates, or related metrics, could be met at reference sites within homogenous bio‐geo‐climatic regions such as the Sierra Nevada. By contrast, in heterogeneous areas such as the semiarid lowland streams, natural variability of breakdown rates can greatly exceed the magnitude of effects expected in response to anthropogenic disturbances.  相似文献   
155.
The corpus of the pharynx in the nematode Aphelenchus avenae (Nematoda: Tylenchomorpha) was three‐dimensionally reconstructed to address questions of phylogenetic significance. Reconstructed models are based on serial thin sections imaged by transmission electron microscopy. The corpus comprises six classes of radial cells, two classes of marginal cells, and 13 neurones belonging to eight classes. Between the arcade syncytia and isthmus cells, numbers of cell classes along the pharyngeal lumen and numbers of nuclei per cell class correspond exactly between A. avenae and Caenorhabditis elegans. The number of radial cell classes between the arcade syncytia and the dorsal gland orifice (DGO) in A. avenae is also identical with outgroups. Proposed homologies of the pharynx imply that expression of the anterior two cell classes as epithelial or muscular differs within both Rhabditida and Tylenchomorpha. Numbers of neurone cell bodies within the corpus correspond exactly to C. elegans, other free‐living outgroups, and other Tylenchomorpha. Neurone polarity and morphology support conserved relative positions of cell bodies of putative neurone homologues. The configuration of cells in the procorpus, including the length of individual cell classes along its lumen, differs across representatives of three deep Tylenchomorpha lineages. Nonhomology of the procorpus challenges the homology of DGO position within the metacorpus, the primary taxonomic character for circumscribing ‘Aphelenchoidea’. Comparison of A. avenae with Aphelenchoides blastophthorus shows that, despite gross pharynx similarity, these nematodes have several differences in corpus construction at a cellular level. The possibility of convergent evolution of an ‘aphelenchid’ pharynx in two separate lineages would be congruent with molecular‐based phylogeny. Putative homologies and conserved arrangement of pharyngeal neurones in Tylenchomorpha expand the experimental model of C. elegans. © 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010.  相似文献   
156.
Defining population structure and genetic diversity levels is of the utmost importance for developing efficient conservation strategies. Overfishing has caused mean annual catches of the European spiny lobster (Palinurus elephas) to decrease alarmingly along its distribution area. In this context, there is a need for comprehensive studies aiming to evaluate the genetic health of the exploited populations. The present study is based on a set of ten nuclear markers amplified in 331 individuals from ten different localities covering most of P. elephas distribution area. Samples from Atlantic and Mediterranean basins showed small but significant differences, indicating that P. elephas populations do not behave as a single panmictic unit but form two partially‐overlapping groups. Despite intense overfishing, our dataset did not recover a recent bottleneck signal, and instead showed a large and stable historical effective size. This result could be accounted for by specific life‐history traits (reproduction and longevity) and the limitations of molecular markers in covering recent timescales for nontemporal samples. The findings of the present study emphasize the need to integrate information on effective population sizes and life‐history parameters when evaluating population connectivity levels from genetic data. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 407–418.  相似文献   
157.
Pastures often experience a pulse of phosphorus (P) when fertilized. We examined the role of arbuscular mycorrhizal fungi (AMF) in the uptake of P from a pulse. Five legumes (Kennedia prostrata, Cullen australasicum, Bituminaria bituminosa, Medicago sativa and Trifolium subterraneum) were grown in a moderate P, sterilized field soil, either with (+AMF) or without (?AMF) addition of unsterilized field soil. After 9–10 weeks, half the pots received 15 mg P kg?1 of soil. One week later, we measured: shoot and root dry weights; percentage of root length colonized by AMF; plant P, nitrogen and manganese (Mn) concentrations; and rhizosphere carboxylates, pH and plant‐available P. The P pulse raised root P concentration by a similar amount in uncolonized and colonized plants, but shoot P concentration increased by 143% in uncolonized plants and 53% in colonized plants. Inoculation with AMF decreased the amount of rhizosphere carboxylates by 52%, raised rhizosphere pH by ~0.2–0.7 pH units and lowered shoot Mn concentration by 38%. We conclude that AMF are not simply a means for plants to enhance P uptake when P is limiting, but also act to maintain shoot P within narrow boundaries and can affect nutrient uptake through their influence on rhizosphere chemistry.  相似文献   
158.
We studied the interactive effects of elevated concentrations of CO2 and O3 on radial growth and wood properties of four trembling aspen (Populus tremuloides Michx.) clones and paper birch (Betula papyrifera Marsh.) saplings. The material for the study was collected from the Aspen FACE (free‐air CO2 enrichment) experiment in Rhinelander (WI, USA). Trees had been exposed to four treatments [control, elevated CO2 (560 ppm), elevated O3 (1.5 times ambient) and combined CO2 + O3] during growing seasons 1998–2008. Most treatment responses were observed in the early phase of experiment. Our results show that the CO2‐ and O3‐exposed aspen trees displayed a differential balance between efficiency and safety of water transport. Under elevated CO2, radial growth was enhanced and the trees had fewer but hydraulically more efficient larger diameter vessels. In contrast, elevated O3 decreased radial growth and the diameters of vessels and fibres. Clone‐specific decrease in wood density and cell wall thickness was observed under elevated CO2. In birch, the treatments had no major impacts on wood anatomy or wood density. Our study indicates that short‐term impact studies conducted with young seedlings may not give a realistic view of long‐term ecosystem responses.  相似文献   
159.
Next‐generation technologies generate an overwhelming amount of gene sequence data. Efficient annotation tools are required to make these data amenable to functional genomics analyses. The Mercator pipeline automatically assigns functional terms to protein or nucleotide sequences. It uses the MapMan ‘BIN’ ontology, which is tailored for functional annotation of plant ‘omics’ data. The classification procedure performs parallel sequence searches against reference databases, compiles the results and computes the most likely MapMan BINs for each query. In the current version, the pipeline relies on manually curated reference classifications originating from the three reference organisms (Arabidopsis, Chlamydomonas, rice), various other plant species that have a reviewed SwissProt annotation, and more than 2000 protein domain and family profiles at InterPro, CDD and KOG. Functional annotations predicted by Mercator achieve accuracies above 90% when benchmarked against manual annotation. In addition to mapping files for direct use in the visualization software MapMan, Mercator provides graphical overview charts, detailed annotation information in a convenient web browser interface and a MapMan‐to‐GO translation table to export results as GO terms. Mercator is available free of charge via http://mapman.gabipd.org/web/guest/app/Mercator .  相似文献   
160.
The transmission of insect‐vectored diseases entails complex interactions among pathogens, hosts and vectors. Chemistry plays a key role in these interactions; yet, little work has addressed the chemical ecology of insect‐vectored diseases, especially in plant pathosystems. Recently, we documented effects of Cucumber mosaic virus (CMV) on the phenotype of its host (Cucurbita pepo) that influence plant‐aphid interactions and appear conducive to the non‐persistent transmission of this virus. CMV reduces host‐plant quality for aphids, causing rapid vector dispersal. Nevertheless, aphids are attracted to the elevated volatile emissions of CMV‐infected plants. Here, we show that CMV infection (1) disrupts levels of carbohydrates and amino acids in leaf tissue (where aphids initially probe plants and acquire virions) and in the phloem (where long‐term feeding occurs) in ways that reduce plant quality for aphids; (2) causes constitutive up‐regulation of salicylic acid; (3) alters herbivore‐induced jasmonic acid biosynthesis as well as the sensitivity of downstream defences to jasmonic acid; and (4) elevates ethylene emissions and free fatty acid precursors of volatiles. These findings are consistent with previously documented patterns of aphid performance and behaviour and provide a foundation for further exploration of the genetic mechanisms responsible for these effects and the evolutionary processes that shape them.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号