首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   905篇
  免费   15篇
  2019年   2篇
  2017年   3篇
  2016年   4篇
  2015年   9篇
  2014年   16篇
  2013年   23篇
  2012年   27篇
  2011年   52篇
  2010年   67篇
  2009年   70篇
  2008年   70篇
  2007年   74篇
  2006年   68篇
  2005年   53篇
  2004年   28篇
  2003年   20篇
  2002年   5篇
  2001年   11篇
  2000年   14篇
  1999年   10篇
  1998年   33篇
  1997年   22篇
  1996年   23篇
  1995年   13篇
  1994年   13篇
  1993年   9篇
  1992年   12篇
  1991年   14篇
  1990年   22篇
  1989年   14篇
  1988年   16篇
  1987年   15篇
  1986年   10篇
  1985年   6篇
  1984年   8篇
  1983年   7篇
  1982年   6篇
  1981年   9篇
  1980年   6篇
  1979年   5篇
  1978年   3篇
  1976年   2篇
  1972年   4篇
  1971年   5篇
  1965年   2篇
  1955年   1篇
  1954年   1篇
  1952年   3篇
  1950年   1篇
  1949年   1篇
排序方式: 共有920条查询结果,搜索用时 78 毫秒
211.
Life history traits are critical components of fitness and frequently reflect adaptive responses to environmental pressures. However, few genes that contribute to natural life history variation have been identified. Insulin signalling mediates the determination of life history traits in many organisms, and single gene manipulation in Drosophila melanogaster suggests that individual genes in the pathway have the potential to produce major effects on these quantitative traits. We evaluated allelic variation at two insulin signalling genes, the Insulin‐like Receptor (InR) and its substrate, chico, in natural populations of D. melanogaster. We found different patterns of variation: InR shows evidence of positive selection and clines in allele frequency across latitude; chico exhibits neutral patterns of evolution. The clinal patterns at InR are replicated between North America and Australia, showing striking similarity in the distribution of specific alleles and the rate at which allele frequencies change across latitude. Moreover, we identified a polymorphism at InR that appears to be functionally significant and consistent with hypothetical patterns of selection across geography. This polymorphism provides new characterization of genic regions of functionality within InR, and is likely a component in a suite of genes and traits that respond adaptively to climatic variation.  相似文献   
212.
Identifying patterns of larval dispersal within marine metapopulations is vital for effective fisheries management, appropriate marine reserve design, and conservation efforts. We employed genetic markers (microsatellites) to determine dispersal patterns in bicolour damselfish (Pomacentridae: Stegastes partitus). Tissue samples of 751 fish were collected in 2004 and 2005 from 11 sites encompassing the Exuma Sound, Bahamas. Bayesian parentage analysis identified two parent–offspring pairs, which is remarkable given the large population sizes and 28 day pelagic larval duration of bicolour damselfish. The two parent–offspring pairs directly documented self‐recruitment at the two northern‐most sites, one of which is a long‐established marine reserve. Principal coordinates analyses of pair‐wise relatedness values further indicated that self‐recruitment was common in all sampled populations. Nevertheless, measures of genetic differentiation (FST) and results from assignment methods suggested high levels of gene flow among populations. Comparisons of heterozygosity and relatedness among samples of adults and recruits indicated spatially and temporally independent sweepstakes events, whereby only a subset of adults successfully contribute to subsequent generations. These results indicate that self‐recruitment and sweepstakes reproduction are the predominant, ecologically‐relevant processes that shape patterns of larval dispersal in this system.  相似文献   
213.
Soils are the largest store of carbon in the biosphere and cool‐cold climate ecosystems are notable for their carbon‐rich soils. Characterizing effects of future climates on soil‐stored C is critical to elucidating feedbacks to changes in the atmospheric pool of CO2. Subalpine vegetation in south‐eastern Australia is characterized by changes over short distances (scales of tens to hundreds of metres) in community phenotype (woodland, shrubland, grassland) and in species composition. Despite common geology and only slight changes in landscape position, we measured striking differences in a range of soil properties and rates of respiration among three of the most common vegetation communities in subalpine Australian ecosystems. Rates of heterotrophic respiration in bulk soil were fastest in the woodland community with a shrub understorey, slowest in the grassland, and intermediate in woodland with grass understorey. Respiration rates in surface soils were 2.3 times those at depth in soils from woodland with shrub understorey. Surface soil respiration in woodlands with grass understorey and in grasslands was about 3.5 times that at greater depth. Both Arrhenius and simple exponential models fitted the data well. Temperature sensitivity (Q10) varied and depended on the model used as well as community type and soil depth – highlighting difficulties associated with calculating and interpreting Q10. Distributions of communities in these subalpine areas are dynamic and respond over relatively short time‐frames (decades) to changes in fire regime and, possibly, to changes in climate. Shifts in boundaries among communities and possible changes in species composition as a result of both direct and indirect (e.g. via fire regime) climatic effects will significantly alter rates of respiration through plant‐mediated changes in soil chemistry. Models of future carbon cycles need to take into account changes in soil chemistry and rates of respiration driven by changes in vegetation as well as those that are temperature‐ and moisture‐driven.  相似文献   
214.
Invasive plant species affect a range of ecosystem processes but their impact on belowground carbon (C) pools is relatively unexplored. This is particularly true for grass invasions of forested ecosystems. Such invasions may alter both the quantity and quality of forest floor inputs. Dependent on both, two theories, ‘priming’ and ‘preferential substrate utilization’, suggest these changes may decrease, increase, or leave unchanged native plant‐derived soil C. Decreases are expected under ‘priming’ theory due to increased soil microbial activity. Under ‘preferential substrate utilization’, either an increase or no change is expected because the invasive plant's inputs are used by the microbial community instead of soil C. Here, we examine how Microstegium vimineum affects belowground C‐cycling in a southeastern US forest. Following predictions of priming theory, M. vimineum's presence is associated with decreases in native‐derived, C pools. For example, in September 2006 M. vimineum is associated with 24%, 34%, 36%, and 72% declines in total organic, particulate organic matter, mineralizable (a measure of microbially‐available C), and microbial biomass C, respectively. Soil C derived from M. vimineum does not compensate for these decreases, meaning that the sum of native‐ plus invasive‐derived C pools is smaller than native‐derived pools in uninvaded plots. Supporting our inferences that C‐cycling accelerates under invasion, the microbial community is more active per unit biomass: added 13C‐glucose is respired more rapidly in invaded plots. Our work suggests that this invader may accelerate C‐cycling in forest soils and deplete C stocks. The paucity of studies investigating impacts of grass invasion on C‐cycling in forests highlights the need to study further M. vimineum and other invasive grasses to assess their impacts on C sink strength and forest fertility.  相似文献   
215.
We review published studies to show that changes in soil moisture levels have significant impacts on a range of wading bird species that use UK lowland grassland, including wet grassland, and obtain their food predominantly by probing the soil. We examine both the hydrological and the ecological literature and assess how management options could alter (1) ecosystem services (via water quality and flooding) and (2) habitat quality for wading birds. The combination of biodiversity goals with broader ecosystem services has been widely advocated and we suggest that appropriate management at multiple scales (e.g. small‐scale: ponds; large‐scale: integrated washlands) could potentially provide both ecosystem services and habitat for wading grassland birds. However, there is only a limited base of evidence on which to assess the potential linkage between these two areas, particularly for non‐wading bird species. Future work should be directed at identifying (1) how crop yield, ecosystem services and biodiversity relate to each other, (2) the extent of land needed to be managed to benefit these multiple purposes and bring about measurable gain (e.g. one or two ponds may make significant inroads in reducing run‐off and pollution but make little difference to wading birds) and (3) solutions to the challenges of setting up management options at large spatial scales (e.g. catchments).  相似文献   
216.
Preen wax is important for plumage maintenance and other functions. Its chemical composition is complex, and separating and quantifying its components, commonly by gas chromatography (GC), can be challenging. We present a simple analytical system consisting of thin‐layer chromatography/flame ionization detection (TLC‐FID) using a solvent system of 100% toluene to analyse the complex compound classes present in preen wax. We used GC and TLC‐FID to investigate the effects of migratory status, diet and captivity on the preen wax composition of White‐throated Sparrows Zonotrichia albicollis, and to measure the quantity of preen wax on the head, primary and tail feathers. White‐throated Sparrows produced preen wax containing only monoesters regardless of migratory state. The monoesters contained several isomers consisting of homologous series of fatty alcohols (C10–C20) and fatty acids (C13–C19) esterified together in different combinations to form monoesters with total carbon numbers ranging from C23 to C38. Weighted average monoester carbon number was greater in captive birds than in wild birds and was greater in captives fed a formulated diet enriched with sesame oil than in birds fed the same diet enriched with fish oil. Captivity and migratory state also affected the complexity of the mixture of monoesters. There was significantly more preen wax on head feathers compared with primary and tail feathers. We suggest that among its many functions, preen wax may play a role in drag reduction by affecting the physical properties of feathers, and/or the fluid flow at their surfaces.  相似文献   
217.
Local host plant specialization in an insect herbivore may be caused by numerous factors, including host-specific natural enemy pressures or a local lack of suitable host-plant choices that are available elsewhere in its range. Such local specialization or "ecological monophagy', for whatever reason, may reflect reduced ability to behaviourally accept or physiologically utilize other allopatric hosts that are naturally used elsewhere by the species. We tested this feeding specialization hypothesis using the Tasmanian subspecies of Macleay's swallowtail butterfly, Graphium macleayanum moggana (Papilionidae), which uses only a single host-plant species, Antherosperma moschatum (southern sassafras, of the Monlmiaceae). Further north, this same butterfly species (G. m. macleayanum) uses at least 13 host-plant species from seven genera and four families (Lauraceae, Rutaceae, Winteraceae, and Monlmiaceae). Our larval feeding assays with G. m. moggana from Tasmania showed that certain Magnoliaceae and Lauraceae could support some larval growth to pupation. However, such growth was slower and survival was lower than observed on their normal southern sassafras host (Monimiaceae). We also found that toxicity of particular plant species varied tremendously within plant families (for both the Magnoliceae and the Monlmiaceae).  相似文献   
218.
Genetic data are useful for estimating the genealogical relationship or relatedness between individuals of unknown ancestry. We present a computer program, ml ‐relate that calculates maximum likelihood estimates of relatedness and relationship. ml ‐relate is designed for microsatellite data and can accommodate null alleles. It uses simulation to determine which relationships are consistent with genotype data and to compare putative relationships with alternatives. ml ‐relate runs on the Microsoft Windows operating system and is available from http://www.montana.edu/kalinowski .  相似文献   
219.
Eighteen nuclear‐encoded microsatellites from a genomic DNA library of greater amberjack, Seriola dumerili, were isolated and characterized. The microsatellites include 13 perfect (five tetranucleotide and eight trinucleotide) and five imperfect (three tetranucleotide, one trinucleotide and one combination dinucleotide/trinucleotide) repeat motifs. The number of alleles at the 18 microsatellites among a sample of 29 fish ranged from two to 20; gene diversity (expected heterozygosity) ranged from 0.068 to 0.950, whereas observed heterozygosity ranged from 0.069 to 0.966. Following Bonferroni correction, genotypes at all 18 microsatellites fit expectations of Hardy–Weinberg equilibrium, and all pairwise comparisons of microsatellites did not deviate significantly from genotypic equilibrium. Greater amberjack support commercial and recreational fisheries along both the Atlantic and the Gulf coasts of the USA and represent a species with potential for worldwide aquaculture. The microsatellites developed will be useful for population genetic studies of ‘wild’ populations and breeding studies of domesticated populations.  相似文献   
220.
Linking environmental computer simulation models and geographic information systems (GIS) is now a common practice to scale up simulations of complex ecosystem processes for decision support. Unfortunately, several important issues of upscaling using GIS are rarely considered; in particular scale dependency of models, availability of input data, support of input and validation data, and uncertainty in prediction including error propagation from the GIS. We linked the biogeochemical Forest‐DNDC model to a GIS database to predict growth of Eucalyptus globulus plantations at two different scales (~0.045 ha plot?1 scale and ~100 ha grid?1 scale) across Victoria, in south‐eastern Australia. Results showed that Forest‐DNDC was not scale dependent across the range of scales investigated. Reduced availability of input data at the larger scale may introduce severe prediction errors, but did not require adjustment of the model in this study. Differences in the support of input and validation data led to an underestimation of predictive precision but an overestimation of prediction accuracy. Increasing data support, produced a high level of prediction accuracy (?e%), but a medium level of predictive precision (r2=0.474, ME=0.318) after statistical validation. GIS error contribution could be detected but was not readily or reliably quantified. In a regional case study for 2653 ha of E. globulus plantations, the linked model GIS system estimated a total standing biomass of 95 260 t C for mid‐2003 and a net CO2 balance of ?45 671 t CO2‐C yr?1 for the entire year of 2002. This study showed that regional predictions of forest growth and carbon sequestration can be produced with greater confidence after a comprehensive assessment of upscaling issues.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号