首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   902篇
  免费   20篇
  2017年   3篇
  2016年   4篇
  2015年   9篇
  2014年   16篇
  2013年   22篇
  2012年   28篇
  2011年   49篇
  2010年   70篇
  2009年   69篇
  2008年   69篇
  2007年   72篇
  2006年   67篇
  2005年   54篇
  2004年   27篇
  2003年   19篇
  2002年   5篇
  2001年   11篇
  2000年   12篇
  1999年   10篇
  1998年   33篇
  1997年   21篇
  1996年   23篇
  1995年   11篇
  1994年   11篇
  1993年   9篇
  1992年   11篇
  1991年   14篇
  1990年   22篇
  1989年   15篇
  1988年   17篇
  1987年   16篇
  1986年   10篇
  1985年   6篇
  1984年   8篇
  1983年   7篇
  1982年   6篇
  1981年   9篇
  1980年   6篇
  1979年   5篇
  1978年   3篇
  1976年   2篇
  1975年   2篇
  1974年   3篇
  1972年   4篇
  1971年   5篇
  1965年   2篇
  1959年   4篇
  1957年   2篇
  1952年   4篇
  1949年   3篇
排序方式: 共有922条查询结果,搜索用时 343 毫秒
71.
In this study we examined ecosystem respiration (RECO) data from 104 sites belonging to FLUXNET, the global network of eddy covariance flux measurements. The goal was to identify the main factors involved in the variability of RECO: temporally and between sites as affected by climate, vegetation structure and plant functional type (PFT) (evergreen needleleaf, grasslands, etc.). We demonstrated that a model using only climate drivers as predictors of RECO failed to describe part of the temporal variability in the data and that the dependency on gross primary production (GPP) needed to be included as an additional driver of RECO. The maximum seasonal leaf area index (LAIMAX) had an additional effect that explained the spatial variability of reference respiration (the respiration at reference temperature Tref=15 °C, without stimulation introduced by photosynthetic activity and without water limitations), with a statistically significant linear relationship (r2=0.52, P<0.001, n=104) even within each PFT. Besides LAIMAX, we found that reference respiration may be explained partially by total soil carbon content (SoilC). For undisturbed temperate and boreal forests a negative control of total nitrogen deposition (Ndepo) on reference respiration was also identified. We developed a new semiempirical model incorporating abiotic factors (climate), recent productivity (daily GPP), general site productivity and canopy structure (LAIMAX) which performed well in predicting the spatio‐temporal variability of RECO, explaining >70% of the variance for most vegetation types. Exceptions include tropical and Mediterranean broadleaf forests and deciduous broadleaf forests. Part of the variability in respiration that could not be described by our model may be attributed to a series of factors, including phenology in deciduous broadleaf forests and management practices in grasslands and croplands.  相似文献   
72.
How species interactions may modify the effects of environmental change on evolutionary adaptation is poorly understood. Elevated CO2 is known to alter plant–herbivore interactions, but the evolutionary consequences for plant populations have received little attention. We conducted an experiment to determine the effects of elevated CO2 and herbivory by a specialist insect herbivore (Danaus plexippus) on the expression of constitutive and induced plant defense traits in five genotypes of Asclepias syriaca, and assessed the heritability of these traits. We also examined changes in relative fitness among plant genotypes in response to altered CO2 and herbivory. The expression of plant defense traits varied significantly among genotypes. Elevated CO2 increased plant growth and physical defenses (toughness and latex), but decreased investment in chemical defenses (cardenolides). We found no effect of elevated CO2 on plant induction of cardenolides in response to caterpillar herbivory. Elevated CO2 decreased the expression of chemical defenses (cardenolides) to a different extent depending on plant genotype. Differential effects of CO2 on plant defense expression, rather than direct effects on relative fitness, may alter A. syriaca adaptation to changing climate.  相似文献   
73.
Many serious ecosystem consequences of climate change will take decades or even centuries to emerge. Long‐term ecological responses to global change are strongly regulated by slow processes, such as changes in species composition, carbon dynamics in soil and by long‐lived plants, and accumulation of nutrient capitals. Understanding and predicting these processes require experiments on decadal time scales. But decadal experiments by themselves may not be adequate because many of the slow processes have characteristic time scales much longer than experiments can be maintained. This article promotes a coordinated approach that combines long‐term, large‐scale global change experiments with process studies and modeling. Long‐term global change manipulative experiments, especially in high‐priority ecosystems such as tropical forests and high‐latitude regions, are essential to maximize information gain concerning future states of the earth system. The long‐term experiments should be conducted in tandem with complementary process studies, such as those using model ecosystems, species replacements, laboratory incubations, isotope tracers, and greenhouse facilities. Models are essential to assimilate data from long‐term experiments and process studies together with information from long‐term observations, surveys, and space‐for‐time studies along environmental and biological gradients. Future research programs with coordinated long‐term experiments, process studies, and modeling have the potential to be the most effective strategy to gain the best information on long‐term ecosystem dynamics in response to global change.  相似文献   
74.
Species‐specific climate responses within ecological communities may disrupt the synchrony of co‐evolved mutualisms that are based on the shared timing of seasonal events, such as seed dispersal by ants (myrmecochory). The spring phenology of plants and ants coincides with marked changes in temperature, light and moisture. We investigate how these environmental drivers influence both seed release by early and late spring woodland herb species, and initiation of spring foraging by seed‐dispersing ants. We pair experimental herbaceous transplants with artificial ant bait stations across north‐ and south‐facing slopes at two contrasting geographic locations. This use of space enables robust identification of plant fruiting and ant foraging cues, and the use of transplants permits us to assess plasticity in plant phenology. We find that warming temperatures act as the primary phenological cue for plant fruiting and ant foraging. Moreover, the plasticity in plant response across locations, despite transplants being from the same source, suggests a high degree of portability in the seed‐dispersing mutualism. However, we also find evidence for potential climate‐driven facilitative failure that may lead to phenological asynchrony. Specifically, at the location where the early flowering species (Hepatica nobilis) is decreasing in abundance and distribution, we find far fewer seed‐dispersing ants foraging during its fruit set than during that of the later flowering Hexastylis arifolia. Notably, the key seed disperser, Aphaenogaster rudis, fails to emerge during early fruit set at this location. At the second location, A. picea forages equally during early and late seed release. These results indicate that climate‐driven changes might shift species‐specific interactions in a plant–ant mutualism resulting in winners and losers within the myrmecochorous plant guild.  相似文献   
75.
76.
In the Way of Development: Indigenous Peoples, Life Projects, and Globalization. Mario Blaser, Harvey A. Feit, and Glenn McRae, eds. New York: Zed Books, 2004. 362 pp.  相似文献   
77.
A morphological dataset based on 14 standard counts and indices was constructed for 68 specimens comprising 12 species of octopuses. This was used to construct distance matrices based on morphological characters. These matrices were compared with genetic distance matrices compiled during molecular phylogenetic analyses of the same 12 species using four mitochondrial and two nuclear genes. Mantel tests showed that there was significant congruence between the phenetic and genetic matrices, suggesting that the genetic signal is reflected in the morphological data set. Matrices of geographical distance were constructed for the 12 species based on the latitude, longitude, and depth of capture of 1726 individuals. These matrices never showed significant congruence with genetic data or with morphological data. Multivariate analysis of the morphological dataset suggests that these counts and indices, traditionally used for discriminating between species in cephalopods, do not show great discrimination at species level, but provide excellent discrimination at the generic level, and, as such, might be useful for resolving the generic placement of some problematic taxa. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 205–218.  相似文献   
78.
Abstract.  In this study, we assessed the ability of mitochondrial genome sequences to recover a test phylogeny of five hymenopteran taxa from which phylogenetic relationships are well accepted. Our analyses indicated that the test phylogeny was well recovered in all nucleotide Bayesian analyses when all the available holometabolan (i.e. outgroup) taxa were included, but only in Bayesian analyses excluding third codon positions when only the hymenopteran representatives and a single outgroup were included. This result suggests that taxon sampling of the outgroup might be as important as taxon sampling of the ingroup when recovering hymenopteran phylogenetic relationships using whole mitochondrial genomes. Parsimony analyses were more sensitive to both taxon sampling and the analytical model than Bayesian analyses, and analyses using the protein dataset did not recover the test phylogeny. In general, mitochondrial genomes did not resolve the position of the Hymenoptera within the Holometabola with confidence, suggesting that an increased taxon sampling, both within the Holometabola and among outgroups, is necessary.  相似文献   
79.
80.
Adults of the Euthalia phemius complex, which is composed of three South‐East Asian nymphalid species, Euthalia phemius, Euthalia ipona, and Euthalia euphemia, were genetically analysed by examining mitochondrial and nuclear genes. The E. phemius complex was also examined morphologically, with particular emphasis on wing markings and male genitalia. No significant differences amongst the three species in the complex were detected with respect to either genetic distance or genital morphology. We therefore conclude that the three currently recognized Euthalia species belong to a single species. Accordingly, E. ipona is synonymized with E. phemius. Euthalia euphemia is treated as a subspecies of E. phemius. Type specimens of all taxa and a synonymic list for the E. phemius complex are also given. In addition, we briefly discuss the evolution and biogeography of the species complex. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 164 , 304–327.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号