首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   4篇
  2020年   1篇
  2018年   2篇
  2016年   4篇
  2015年   1篇
  2014年   2篇
  2013年   4篇
  2012年   6篇
  2011年   4篇
  2010年   4篇
  2009年   5篇
  2008年   4篇
  2007年   6篇
  2006年   4篇
  2005年   3篇
  2003年   6篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   4篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1992年   1篇
  1991年   3篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1984年   1篇
  1980年   1篇
  1977年   1篇
  1976年   1篇
  1955年   1篇
排序方式: 共有84条查询结果,搜索用时 750 毫秒
41.
Experimental conditions that allow “normal” development of starfish eggs stripped of the fertilization membrane are reported in this paper. Four kinds of intercellular relation are distinguished during the pre-hatching stages of these eggs. Cells from 2- to 8-cell stages are hardly related to each other, while those from 16- to 128-cell stages are bound loosely together. After the 8th division (about 5.5 hr after insemination at 21°C) cells adhere closely and cooperate with each other to perform morphogenetic movement of “blastulation”. This relation is taken over by that of a true multicellular system at about 10 hr after insemination. Closely after this, the function of cilia carries the embryo away from the substratum.  相似文献   
42.
Abstract Patterns of reproductive and vegetative biomass allocation were compared in male and female plants of the alpine herb Aciphylla simplicifolia. Male and female plants had similar vegetative biomass but differed in the pattern of resource allocation. Inflorescences of males and females were similar in weight at the time of flowering, but differed in biomass allocation to some structures within the inflorescences, particularly those associated with ovule production and pollinator attraction (number and size of flowers). At the time of fruit production, female inflorescences were 2.6 times heavier than at flowering with developing fruit six times heavier than flowers. In addition to the increase in biomass allocated to structures associated with the provisioning and dissemination of seed, support structures (main and side stalks) were also heavier. As a result of this additional investment of resources at the time of fruit production, the reproductive effort (RE) of female plants was much higher than that of males: 37% of above ground biomass compared with 21% for males. Differences in RE did not change with plant size; however, allocation to reproduction appeared to be a constant proportion of biomass over nearly all plant sizes sampled. These results show that sex‐specific resource allocation can be a complex of temporal and morphological patterns.  相似文献   
43.
44.
Calomys musculinus, one of the most abundant rodent species in central Argentina, is the reservoir of Junin virus, the aetiological agent of Argentine hemorrhagic fever. We isolated six polymorphic microsatellite loci for microgeographical studies of population structure in this species. Amplification of these loci in 36 individuals from three natural populations revealed five to 14 alleles per locus and expected heterozygosities from 0.426 to 0.868. Cross‐species amplifications suggest that primers designed for these loci may be useful in other closely related species of the tribe Phyllotini, but not in species of other more distantly related tribes of the subfamily Sigmodontinae.  相似文献   
45.
1. This synthesis examines 35 long‐term (5–35 years, mean: 16 years) lake re‐oligotrophication studies. It covers lakes ranging from shallow (mean depth <5 m and/or polymictic) to deep (mean depth up to 177 m), oligotrophic to hypertrophic (summer mean total phosphorus concentration from 7.5 to 3500 μg L?1 before loading reduction), subtropical to temperate (latitude: 28–65°), and lowland to upland (altitude: 0–481 m). Shallow north‐temperate lakes were most abundant. 2. Reduction of external total phosphorus (TP) loading resulted in lower in‐lake TP concentration, lower chlorophyll a (chl a) concentration and higher Secchi depth in most lakes. Internal loading delayed the recovery, but in most lakes a new equilibrium for TP was reached after 10–15 years, which was only marginally influenced by the hydraulic retention time of the lakes. With decreasing TP concentration, the concentration of soluble reactive phosphorus (SRP) also declined substantially. 3. Decreases (if any) in total nitrogen (TN) loading were lower than for TP in most lakes. As a result, the TN : TP ratio in lake water increased in 80% of the lakes. In lakes where the TN loading was reduced, the annual mean in‐lake TN concentration responded rapidly. Concentrations largely followed predictions derived from an empirical model developed earlier for Danish lakes, which includes external TN loading, hydraulic retention time and mean depth as explanatory variables. 4. Phytoplankton clearly responded to reduced nutrient loading, mainly reflecting declining TP concentrations. Declines in phytoplankton biomass were accompanied by shifts in community structure. In deep lakes, chrysophytes and dinophytes assumed greater importance at the expense of cyanobacteria. Diatoms, cryptophytes and chrysophytes became more dominant in shallow lakes, while no significant change was seen for cyanobacteria. 5. The observed declines in phytoplankton biomass and chl a may have been further augmented by enhanced zooplankton grazing, as indicated by increases in the zooplankton : phytoplankton biomass ratio and declines in the chl a : TP ratio at a summer mean TP concentration of <100–150 μg L?1. This effect was strongest in shallow lakes. This implies potentially higher rates of zooplankton grazing and may be ascribed to the observed large changes in fish community structure and biomass with decreasing TP contribution. In 82% of the lakes for which data on fish are available, fish biomass declined with TP. The percentage of piscivores increased in 80% of those lakes and often a shift occurred towards dominance by fish species characteristic of less eutrophic waters. 6. Data on macrophytes were available only for a small subsample of lakes. In several of those lakes, abundance, coverage, plant volume inhabited or depth distribution of submerged macrophytes increased during oligotrophication, but in others no changes were observed despite greater water clarity. 7. Recovery of lakes after nutrient loading reduction may be confounded by concomitant environmental changes such as global warming. However, effects of global change are likely to run counter to reductions in nutrient loading rather than reinforcing re‐oligotrophication.  相似文献   
46.
The population genetic structure of marine species lacking free-swimming larvae is expected to be strongly affected by random genetic drift among populations, resulting in genetic isolation by geographical distance. At the same time, ecological separation over microhabitats followed by direct selection on those parts of the genome that affect adaptation might also be strong. Here, we address the question of how the relative importance of stochastic vs. selective structuring forces varies at different geographical scales. We use microsatellite DNA and allozyme data from samples of the marine rocky shore snail Littorina saxatilis over distance scales ranging from metres to 1000 km, and we show that genetic drift is the most important structuring evolutionary force at distances > 1 km. On smaller geographical scales (< 1 km), divergent selection between contrasting habitats affects population genetic structure by impeding gene flow over microhabitat borders (microsatellite structure), or by directly favouring specific alleles of selected loci (allozyme structure). The results suggest that evolutionary drivers of population genetic structure cannot a priori be assumed to be equally important at different geographical scales. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 94 , 31–40.  相似文献   
47.
1. We describe the changes in trophic dynamics in Lake Maggiore from c. 1943 to 2002 using subfossil cladoceran data from a high resolution sediment record, long‐term contemporary data series and historical information. During this period the lake went through a eutrophication phase until 1980 followed by oligotrophication. 2. During the eutrophication period a major increase occurred in the abundance of Chydorus sphaericus, the proportion of planktonic cladocerans and total abundance of cladocerans in the sediment. Since 1980 the abundance declined again and subfossil Eubosmina mucro length and contemporary Daphnia body length increased, most probably as a result of higher abundance of invertebrate predators. 3. Changes in the fish stock composition caused by the introduction of exotic fish during the pre‐eutrophication period and a complete ban on fishing because of Dichloro‐diphenil‐ethanes (DDTs) pollution of the lake (during oligotrophication) could also be detected in the community assemblage and size structure of the sediment zooplankton. 4. We found good correspondence between trophic changes inferred from cladoceran subfossils (community composition, size and predation pressure) and contemporary data, suggesting that sediment samples can be used to infer past development in trophic dynamics, including predation by fish and pelagic invertebrates in lakes with scarce neolimnological data. 5. Furthermore, by combining palaeolimnological cladoceran data rarely obtained from contemporary samples (e.g. benthic and plant‐associated cladocerans, mucro length of bosminids) with contemporary data of organisms poorly represented in the sediment record (e.g. remains of Bythotrephes and fishes) a more complete understanding of changes in trophic dynamics was obtained. 6. The detection in the sediments of meteorological events whose effects on zooplankton had been recorded in the long‐term studies also provided evidence that eutrophication tends to override climate signals. 7. We conclude that a combined palaeo‐neolimnological approach can be a powerful tool for elucidating past changes in the trophic dynamics of lakes and the interaction with climate induced changes, not least when high resolution sediment records are available.  相似文献   
48.
ABSTRACT. The effects of platelet-activating factor (PAF), at doses ranging from 10−6 M to 10−10 M, on cell growth and on cell differentiation of Herpetomonas muscarum muscarum were investigated. Cell differentiation was evaluated by both light and electron microscopy. At the concentrations used, PAF did not interfere with the protozoan growth. However, parasites grown in the presence of PAF (10−6 M) were significantly more differentiated than those grown in the absence of PAF, since the first day of culture. On the first two days of culture, PAF doses ranging from 10−10 M to 10−7 M, did not significantly interfere with the differentiation of these parasites, although after the third day of culture, all PAF doses used significantly increased the protozoan differentiation. Specific PAF receptor antagonists totally abrogated (WEB 2086 and WEB 2170)or significantly decreased (BN 52021) PAF effect on cell differentiation. These findings indicate PAF triggers the process of cell differentiation in Herpetomonas muscarum muscarum and suggest these parasites have receptors for PAF.  相似文献   
49.
Cycling dynamics of dissolved organic carbon (DOC) were examinedin Lake Pontchartrain estuary, Louisiana, in relation to changesin freshwater inputs. DOC concentrations ranged from 5.3 to 8.5mg C L-1 reaching their highest during high river inflow.The percentage of DOC represented by HMW DOC (or colloidal material)was greatest (ca. 11%) at stations where freshwaterdischarge from rivers and surrounding wetlands was most significant.Moreover, the lignin-phenol content of this material (ranged from 0.09 to 0.33 and from 0.11 to 0.39)confirmed that a significant fraction of colloidal organic carbon wasderived from terrestrial sources. Riverine and benthic fluxes representedthe dominant sources of DOC to the estuary. On an annual basis, riverineand benthic DOC concentrations were estimated to be 2.8 ×10 10 g C yr-1 and 8.8 × 10 10 g C yr-1, respectively, while the totalDOC pool in the estuary was 3.8 × 10 10 gC. Annual average concentrations of dissolved inorganic carbon (DIC)(1298 M) and pCO2 (5774 atm)were comparable to those found in other freshwater systems that reachedCO2 saturation levels. Net losses of DOC in the LakePontchartrain estuary appeared to be primarily controlled by heterotrophicconsumption (conversion of CO2) – whichmay have been amplified by the long residence time (approximately 120days) of DOC in this system.  相似文献   
50.
Biomass estimates of primary and different ages of secondary vegetation are reported for a tropical forest region in Rondônia, Western Brazilian Amazon. The estimates are based on published allometric equations, and on vegetation composition and allometric data collected in areas of primary forest and secondary vegetation of ages 2, 3, 5, 9, 11, 16 and 18 years. Primary forest biomass estimates varied from 290 to 495 t ha–1. Secondary vegetation biomass estimates accounted for 40–60% of the primary forest biomass after 18 years of abandonment. Secondary growth rates in lightly used areas are estimated to have varied from 6.6 to 8.7 t ha–1 y–1 between the third and the eighteenth years after abandonment. CO2 sequestration by regrowing vegetation is discussed for two scenarios of land abandonment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号